Objectives: A major problem for wound healing is contamination with bacteria, often resulting in biofilm formation and wound infection, which, in turn, needs immediate intervention such as surgical debridement and through irrigation. A topical treatment with cold atmospheric pressure plasma (CAP) for wound disinfection may present an alternative and less painful approach.
Methods: This study investigated the antibacterial effects of a cold atmospheric pressure argon plasma jet (kINPen® MED) as a CAP source, using the three-dimensional Staphylococcus aureus immunocompetent biofilm system hpBIOM in addition to a standard planktonic test. Furthermore, skin cell compatibility was evaluated using a keratinocyte (HaCat) model.
Results: CAP treatment (0-240 s) followed by incubation (15, 120 min) within the CAP-treated media showed slight bactericidal efficacy under planktonic conditions but no effect on biofilms. However, indirect CAP treatment of keratinocytes performed under the same conditions resulted in a significant decrease in metabolic activity. Short CAP treatment and exposure time (30 s; 15 min) induced a slight increase in the metabolic activity; however, longer treatments and/or exposure times led to pronounced reductions up to 100%. These effects could partially be reversed by addition of catalase, indicating a dominant role of CAP-generated hydrogen peroxide.
Conclusions: These results indicate that plasma treatment does not lead to the desired disinfection or significant reduction in the bacterial burden of Staphylococcus aureus in a wet milieu or in biofilms. Thus, treatment with CAP could not be recommended as a single anti-bacterial therapy for wounds but could be used to support standard treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2021.106319 | DOI Listing |
Sci Rep
December 2024
Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
Recent changes in climate and environments have promoted the range expansion of insect pests of tropical and subtropical origins into temperate regions. For more accurate and faster risk assessment of this expansion, we developed a novel indicator to link a physiologically derived parameter of chilling injury with the survival of insect populations in nature by using two insects, Spodoptera frugiperda and Cicadulina bipunctata with tropical and subtropical origins, and one cool-adapted insect, Laodelphax striatellus. The parameter derived from a proportional increment in the time to 99.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Life Science and Technology, Harbin Normal University, Harbin, China.
Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.
View Article and Find Full Text PDFProtein Sci
January 2025
Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.
View Article and Find Full Text PDFPLoS One
December 2024
Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou, China.
The Belt and Road strategy has significantly advanced the scale of infrastructure construction in the Qinghai-Tibet Plateau permafrost area. Consequently, this demands higher requirements on the strength and frost resistance of concrete (FRC) cured under low-temperature and negative-temperature conditions. Accordingly, in this study, tests on the mechanical properties and FRC were conducted under standard curing, 5 °C curing, and -3 °C curing conditions.
View Article and Find Full Text PDFPLoS One
December 2024
Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy.
A high-resolution record of central Mediterranean Sea Surface Temperatures (SSTs) based on the alkenone UK'37 index and planktic δ18O values for the surface-dweller G. ruber has been reconstructed across the Pliocene/Pleistocene transition at Monte San Nicola (Sicily), reference area for the GSSP (Global Boundary Stratotype Section and Point) of the Gelasian Stage. Spectral analyses indicate that the SST record is predominantly paced by a cyclicity in the ~47 kyr time domain, consistent with the obliquity driven glacial-interglacial variability that is expected to dominate in the interval of relevance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!