Hafnium nitride (HfN) thin films with low electrical resistivity were obtained by inductively coupled plasma assisted magnetron sputtering as a function of ICP power. Microstructural, crystallographic and sheet resistance characterizations of HfN films were performed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 4 point probe method. The results show that ICP has significant effects on coating's microstructure, structural and electrical properties of HfN films. With an increase in ICP power, thin film microstructure evolved from a porous columnar structure to a highly dense one. HfN thin films with different crystal structure and phases were obtained as a function of ICP power. The minimum resistivity of 125 -cm, the smoothest surface morphology with roughness of 5.9 nm were obtained for the HfN films deposited at ICP power of 200 W.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2021.19216 | DOI Listing |
Headache
January 2025
Translational Brain Science, Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK.
Objective: To gain initial insight into the efficacy to lower intracranial pressure (ICP), side effects, and effects on cognition of five drugs commonly used to treat idiopathic intracranial hypertension (IIH).
Background: Limited clinical data exist for the treatment for IIH. Impaired cognition is recognized in IIH and can be exacerbated by medications.
Comput Biol Med
January 2025
Servicio de Terapia Intensiva de Adultos, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, Ciudad Autonoma de Buenos Aires, C1199ACL, Argentina.
Intracranial hypertension (ICH) is a common and critical condition in neurocritical care, often requiring immediate intervention. Current methods for continuous intracranial pressure (ICP) monitoring are invasive and costly, limiting their use in resource-limited settings. This study investigates the potential of the electroencephalography (EEG) as a non-invasive alternative for ICP monitoring.
View Article and Find Full Text PDFPrev Sci
January 2025
Center for Youth Development & Intervention, The University of Alabama, Tuscaloosa, AL, 35487, USA.
Coping Power (CP) is an empirically supported school-based intervention for children at risk for aggression. A child's social status with peers and the extent to which they accurately perceive it are important aspects of preadolescent social development that may influence how intervention format affects disruptive behavior outcomes. Further, reactive (RA) and proactive (PA) functional subtypes of aggression have differential relations with peer acceptance.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
Technology-critical elements (TCEs) refer to the elements that play an important role in many emerging technologies and the production of advanced materials, and these include lanthanides, tungsten and vanadium. Actinides, Tl, and Pb, which also belong to TCEs, are abundantly used in power generation, industrial applications, and modern agricultural practices. The information on the influence of these elements on the aquatic environment and biota is still rather scarce.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Discipline Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
In this work, we show a high-performance GaN-on-Si quasi-vertical PiN diode based on the combination of beveled sidewall and fluorine plasma treatment (BSFP) by an inductively coupled plasma (ICP) system. The leakage current and breakdown voltage of the diode are systematically studied. Due to the beveled sidewall treated by the fluorine plasma, the diodes achieve an excellent breakdown voltage (V) of 790 V and a low reverse leakage current.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!