Liquid crystal microcapsules have attracted increasing attention due to their sophisticated structures and adjustable multifunctional features. However, the synthesis of a microscale substrate with wide electromagnetic waveband modulation characteristics and good photoelectric stabilization is still limited and challenging. Herein, a new breed of microcapsules containing dye-doped liquid crystals in a yolk-shell configuration with VTES (vinyl-trim-ethyl-silane)-modified FeO@SiO is created. It exhibits an unexpected color enhancement effect, reversible electrochromic performance, and excellent magnetically controllable characteristics. Additionally, a multispectral (visible light, near-infrared light, and high-frequency electromagnetic wave) electro-responsive fabric based on the proposed microcapsules was developed to explore its application in wearable sensors. The present work opens an avenue toward the fabrication of microscale microencapsulated soft materials with a continuous and stable yolk-shell structure. Moreover, it will expand the application regimes of liquid crystal materials in smart windows and advanced textiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c00003 | DOI Listing |
J Mol Graph Model
January 2025
Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia.
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Liquid crystal monomers (LCMs) are emerging pollutants that have attracted attention recently due to their unique chemical properties and wide applications. However, in-depth research on LCMs' potential risks to soil health remains blank. Therefore, 107 LCMs and nine soil health characterization proteins/enzymes were selected as research objects in this study.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.
A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.
View Article and Find Full Text PDFWe propose and experimentally demonstrate liquid crystal-based computer-generated image holography enabled by the Pancharatnam-Berry phase modulation. Such a device exhibits distinctive properties, such as natural light illumination, polarization insensitivity, broadband optical response, high polarization conversion efficiency, and direct visibility to the naked eye. These unique attributes make this type of image holography a promising avenue for applications in optical information storage, anti-counterfeiting, and advanced information displays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!