5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid (5,6-DiHETE) is an eicosapentaenoic acid-derived lipid metabolite, which we previously detected in inflamed mouse colon. In this study, we investigated the pathophysiological roles of 5,6-DiHETE in murine colitis and its underlying mechanisms of action, focusing on the effects on transient receptor potential vanilloid (TRPV) channel activity. Oral administration of dextran sodium sulfate (DSS, 2%, for 4 days) caused colon inflammation, which peaked on day 7 and gradually declined by day 18. 5,6-DiHETE concentration in colon tissue was significantly increased during the healing phase of colitis (days 9 to 18). In vitro study showed that pretreatment with 5,6-DiHETE (0.1-1 μM, 30 minutes) significantly inhibited endothelial barrier disruption induced by a TRPV4 agonist (GSK1016790A, 50 nM). Intracellular Ca imaging also showed that pretreatment with 5,6-DiHETE (1 μM, 10 minutes) reduced GSK1016790A-induced intracellular Ca increase in HEK293T cells overexpressing TRPV4. In vivo, intraperitoneal administration of 5,6-DiHETE (50 µg kg  day ) during the healing phase accelerated the recovery from DSS-induced colitis. Pathological studies showed that the administration of 5,6-DiHETE inhibited edema formation and leukocyte infiltration in inflamed colon tissue. In conclusion, we identified 5,6-DiHETE as a novel endogenous TRPV4 antagonist, and we also demonstrated that its administration promotes the healing of colitis by inhibiting inflammatory responses.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201903207RRRDOI Listing

Publication Analysis

Top Keywords

56-dihydroxy-8z11z14z17z-eicosatetraenoic acid
8
healing colitis
8
colitis inhibiting
8
transient receptor
8
receptor potential
8
potential vanilloid
8
56-dihete
8
colon tissue
8
healing phase
8
pretreatment 56-dihete
8

Similar Publications

Corrigendum to Noninflammatory 97-amino acid High Mobility Group Box 1 derived polypeptide disrupts and prevents diverse biofilms. EBioMedicine 107 (2024).

EBioMedicine

January 2025

Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital; Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University; Columbus, OH 43210, USA. Electronic address:

View Article and Find Full Text PDF

Corrigendum to "Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma" [Nanomed.: Nanotechnol. Biol. Med. 14/3 (2018) 713-723].

Nanomedicine

January 2025

Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China. Electronic address:

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!