Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The essential nature of Zn and widespread Zn deficiency in plants under field conditions underlie the great interest of researchers in the regulation of plant Zn homeostasis. Here, the current knowledge of plant Zn homeostasis regulation, mainly in A. thaliana, is reviewed. The plant Zn homeostasis machinery is regulated largely at the transcriptional level. Local regulation in response to changes in cellular Zn status is based on the transcription factors bZIP19 and bZIP23, which sense changes in free Zn concentrations in the cell. However, there are likely other unidentified ways to sense cellular free Zn concentrations in addition to the well-known bZIP19 and bZIP23 factors. In recent years, the existence of a shoot-derived systemic Zn deficiency signal, which is involved in the upregulation of Zn transport from roots to shoots, was demonstrated. Additionally, rates of mRNA degradation of Zn homeostasis genes are likely regulated by changes in cellular Zn status. In addition to the regulation of Zn transport, other mechanisms for the regulation of plant Zn homeostasis exist. "Zn sparing" mechanisms could be involved in the decrease in plant Zn requirements under Zn deficiency. Additionally, autophagy is probably regulated by local Zn status and involved in Zn reutilization at the cellular level. Current issues related to studying Zn homeostasis regulation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!