Isocitrate dehydrogenase 1 (IDH1) mutant R132H, promoting the oncometabolite D-2-hydroxyglutarate (D2HG), is a driver mutation and an emerging therapeutic target in glioma. This study identified a novel mutant IDH1 inhibitor, WM17, by virtual screening and enzymatic confirmation. It could bind to and increase mutant IDH1 protein's thermostability in both endogenous heterozygous cells and exogenous overexpressed cells. Consequently, WM17 reversed the accumulation of D2HG and histone hypermethylation in IDH1 mutated cells. Finally, we concluded that WM17 significantly inhibited cell migration in IDH1 mutated glioma cells, although it has no apparent effect on cell proliferation. Further studies are guaranteed toward the development of WM17 as a therapeutic agent for IDH1 mutated glioma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.02.112DOI Listing

Publication Analysis

Top Keywords

idh1 mutated
12
novel mutant
8
isocitrate dehydrogenase
8
mutant idh1
8
mutated glioma
8
idh1
6
identification characterization
4
characterization novel
4
mutant
4
mutant isocitrate
4

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear.

View Article and Find Full Text PDF

Purpose: Biliary tract cancers (BTCs) include intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancers. BTCs have a number of genomic alterations, including isocitrate dehydrogenase 1 () mutations, fibroblast growth factor receptor 2 () rearrangements, and amplifications. Therapies targeting these alterations have shown clinical benefit in patients with BTCs in the United States.

View Article and Find Full Text PDF

Association of IDH1 Mutation and MGMT Promoter Methylation with Clinicopathological Parameters in an Ethnically Diverse Population of Adults with Gliomas in England.

Biomedicines

November 2024

Cancer Epidemiology and Cancer Services Research, Centre for Cancer, Society & Public Health, Bermondsey Wing, King's College London, 3rd Floor, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.

Molecular profiles can predict which patients will respond to current standard treatment and new targeted therapy regimens. Using data from a highly diverse population of approximately three million in Southeast London and Kent, this study aims to evaluate the prevalence of IDH1 mutation and MGMT promoter methylation in the gliomas diagnosed in adult patients and to explore correlations with patients' demographic and clinicopathological characteristics. Anonymised data on 749 adult patients diagnosed with a glioma in 2015-2019 at King's College Hospital were extracted.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), a WHO grade 4 glioma, is the most common and aggressive primary brain tumor, characterized by rapid progression and poor prognosis. The heterogeneity of GBM complicates diagnosis and treatment, driving research into molecular biomarkers that can offer insights into tumor behavior and guide personalized therapies. This review explores recent advances in molecular biomarkers, highlighting their potential to improve diagnosis and treatment outcomes in GBM patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!