Kinetic chromogenic (CG) and fluorogenic (FG) quantification deduces analyte concentration based on the reaction rate between the CG/FG probe and its targeted molecule. Little progress has been made in the past half century in either the theory or the applications of the kinetic spectroscopic quantification methods. Current kinetic CG/FG quantification is limited only to a subset of CG/FG reactions that can be approximated as the single-step process, and more problematically, to research samples with no matrix interferences. Reported herein is a kinetic quantification model established for multistep CG/FG reactions and a proof-of-concept demonstration of direct kinetic FG quantification of biomarkers in practical samples. The kinetic spectral intensity of the CG/FG reactions with two rate-limiting steps comprises three temporal regions: an accelerating period where rate of signal change is increasingly rapid, a linear region where the rate of signal change is approximately constant, and a deceleration region where the rate of signal increase becomes progressively small. Kinetic quantification is performed through simple linear-curve-fitting of the kinetic signal in its linear time-course region. The theoretical model is validated with the dual CG/FG 2-thiobarbituric acid (TBA) and malondialdehyde (MDA) reaction. Proof-of-concept kinetic spectroscopic quantification of analytes in practical samples is demonstrated with the FG quantification of MDA in canned chicken. The only sample preparation is bench-top centrifugation followed by two sequential syringe filtrations. The total kinetic FG assay time is less than 10 min, more than 10 times more efficient than the current equilibrium-based MDA assay. The theoretical model and the measurement design strategies offered by this work should help transform the current kinetic spectroscopic quantification from a niche research tool to an indispensable technique for time-sensitive applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338293DOI Listing

Publication Analysis

Top Keywords

kinetic spectroscopic
16
spectroscopic quantification
16
kinetic
12
practical samples
12
cg/fg reactions
12
kinetic quantification
12
rate signal
12
quantification
11
chromogenic fluorogenic
8
quantification biomarkers
8

Similar Publications

Alantolactone and isoalantolactone are two isomeric sesquiterpene lactones that were isolated from Innula recemosa. Here, we are used for the semisynthesis of novel isoxazolidine hybrids of alantolactone and isoalantolactone through a two-step process: nitrone synthesis followed by nitrone 1,3-dipolar cycloaddition. The formation of the cycloadduct was well characterized via modern spectroscopic techniques such as HRMS, H NMR, C NMR, DEPT-90, DEPT-135, and 2D NMR.

View Article and Find Full Text PDF

Direct preparation of silver nanoclusters is of great significance for their applications. In this work, by selecting sodium cyanoborohydride as a weak reducing agent to control the kinetics of the reduction reaction, we successfully prepared silver nanoclusters protected by thiol-containing ligands, including mercaptosuccinic acid, cysteine, and glutathione. Based on the silver nanoclusters protected by mercaptosuccinic acid, silver-gold alloy nanoclusters were obtained through a gold doping reaction.

View Article and Find Full Text PDF

Surface-Enhanced Raman Spectroscopic Study of Key Intermediates in Electrochemical Ammonia Decomposition.

J Am Chem Soc

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Ammonia is an alternative hydrogen storage material and a promising source of sustainable clean energy. The lack of a mechanistic understanding of ammonia electrooxidation hinders the efforts to overcome the slow kinetics of the anode reaction in direct ammonia fuel cells. Herein, we use surface-enhanced Raman spectroscopy to study the electro-decomposition of ammonia on the Au surface.

View Article and Find Full Text PDF

3D printed extended-release hydrochlorothiazide tablets.

Eur J Pharm Sci

December 2024

Institute of Pharmaceutical Technology, Center of pharmaceutical nanotechnology, Faculty of Pharmacy, Ss. Cyril & Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, R North Macedonia.

In this study 3D printed tablets (printlets) with extended release of hydrochlorothiazide (HHT) as model active ingredient were designed and developed. Four formulations, F0.1, F1, F0.

View Article and Find Full Text PDF

Unlabelled: Today, nanoplastics (NPs) are a growing environmental concern due to their persistence and widespread distribution, posing risks to ecosystems and human health. Their ability to transport pollutants makes them particularly dangerous, underscoring the urgent need for effective removal methods. Herein, we report the synthesis of an environmentally friendly material that enables the magnetic removal of polystyrene nanoparticles (PSNPs) from aqueous solutions by green chemistry approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!