Hydrophobic ceramic coatings are used for a variety of applications. Generally, hydrophobic coating surfaces are obtained by reducing the surface energy of the coating material or by forming a highly textured surface. Reducing the surface energy of the coating material requires additional costs and processing and changes the surface properties of the ceramic coating. In this study, we introduce a simple method to improve the hydrophobicity of ceramic coatings by implementing a textured surface without chemical modification of the surface. The ceramic coating solution was first prepared by adding cellulose nanofibers (CNFs) and then applied to a polypropylene (PP) substrate. The surface roughness increased as the amount of added CNFs increased, increasing the water contact angle of the surface. When the amount of CNFs added was corresponding to 10% of the solid content, the surface roughness average of the area was 43.8 m. This is an increase of approximately 140% from 3.1 m (the value of the surface roughness of the surface without added CNFs). In addition, the water contact angle of the coating with added CNF increased to 145.0°, which was 46% higher than that without the CNFs. The hydrophobicity of ceramic coatings with added CNFs was better because of changes in the surface topography. After coating and drying, the CNFs randomly accumulated inside the ceramic coating layer, forming a textured surface. Thus, hydrophobicity was improved by implementing a rugged ceramic surface without revealing the surface of the CNFs inside the ceramic layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2021.19430 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!