Development of portable, sensitive and reliable devices for Ochratoxin A (OTA) detection is highly demanded, especially for resource-limited regions. Herein, a novel paper-based analytical device (PAD) is designed through wax printing and screen-printed technologies, which integrates sample flowing, electrode modification, cleaning and electrochemical (EC)/colorimetric signal output. To greatly enhance the detection sensitivity, we synthesized a chitosan functionalized MoS-Au@Pt (Ch-MoS-Au@Pt) via electrostatic self-assembly, and used it to immobilize the label aptamer (apta) for signal regulation and amplification. Concretely, with the addition of analytes, the Ch-MoS-Au@Pt-apta could be combined on the sensing interface by specific biorecognition and catalyzed reduction of HO, resulting in a remarkable EC response. Meanwhile, the released hydroxyl radicals (·OH) flowed to the visualization zone and promoted the oxidation of 3,3',5,5'-tetramethylbenzidine for colorimetric detection. Consequently, the dual-mode PAD achieved acceptable prediction and accurate analysis in the range of 0.1-200 ng mL and 1 × 10-200 ng mL by matching the visual and EC signal intensity, respectively. Compared with traditional single-mode sensor for OTA, the proposed dual-mode aptasensor featuring independent signal conversion and readout, not only avoided the false-positive signal associated with detection condition and operation, but also enlarged the detection ranges and improved the sensitivity. Furthermore, the consistency of EC/colorimetric assay was validated in real OTA samples. Overall, this work provided a portable, cost-effective, sensitive and visualized aptasensor platform, which could be extended to various other mycotoxins in the field of food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113146 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:
For on-site analysis, the combination of surface enhanced Raman scattering (SERS) and colorimetry, as a dual-mode detection, can effectively improve the accuracy of detection, and reduce the influence of instrument fluctuation, which greatly improves the accuracy and reliability of the results. However, the preparation of SERS/colorimetry substrates are usually time-consuming and costly, which limits their practical applications. In this paper, a hydrophobic paper-based SERS/colorimetry substrate can be prepared by a simple spraying method.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China.
Infection with H. pylori (Helicobacter pylori) is the most prevalent human infection worldwide and is strongly associated with many gastrointestinal disorders, including gastric cancer. Endoscopy is mainly used to diagnose H.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.
Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.
Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!