Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies have shown that epithelial-mesenchymal transition (EMT) involves reactive oxygen species (ROS) production, but how ferritinophagy-mediated ROS production affects EMT status remains obscure. 2,2'-di-pyridylketone hydrazone dithiocarbamate s-butyric acid (DpdtbA), an iron chelator, exhibited interesting antitumor activities against gastric and esophageal cancer cells. As an extension of our previous research, in this paper we presented the effect of DpdtbA on EMT regulation of gastric cancer lines (SGC-7901 and MGC-803) in both normoxic and hypoxic conditions. The data from immunofluorescent and Western blotting analysis revealed that DpdtbA treatment resulted in EMT inhibition along with downregulation of hypoxia-inducible factor (hif-1α), hinting that prolyl hydroxylase 2 (PHD2) was involved. Knockdown of PHD2 significantly attenuated the action of DpdtbA on EMT regulation, supporting that PHD2 involved the EMT modulation. In addition, the inhibition of EMT involved ROS production that stemmed from DpdtbA induced ferritinophagy; while the accumulation of ferrous iron due to ferritinophagy contributed to PHD2 activation and hif-1α degradation. The correlation analysis revealed that ferritinophagic flux was a dominant driving force in determination of the EMT status. Futhermore, the ferritinophagy-mediated ROS production triggered p53 activation. Taken together, All data supported that DpdtbA induced EMT inhibition was through activation of p53 and PHD2/hif-1α pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2021.111413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!