Radiomics With Ensemble Machine Learning Predicts Dopamine Agonist Response in Patients With Prolactinoma.

J Clin Endocrinol Metab

Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.

Published: July 2021

Context: Early identification of the response of prolactinoma patients to dopamine agonists (DA) is crucial in treatment planning.

Objective: To develop a radiomics model using an ensemble machine learning classifier with conventional magnetic resonance images (MRIs) to predict the DA response in prolactinoma patients.

Design: Retrospective study.

Setting: Severance Hospital, Seoul, Korea.

Patients: A total of 177 prolactinoma patients who underwent baseline MRI (109 DA responders and 68 DA nonresponders) were allocated to the training (n = 141) and test (n = 36) sets. Radiomic features (n = 107) were extracted from coronal T2-weighed MRIs. After feature selection, single models (random forest, light gradient boosting machine, extra-trees, quadratic discrimination analysis, and linear discrimination analysis) with oversampling methods were trained to predict the DA response. A soft voting ensemble classifier was used to achieve the final performance. The performance of the classifier was validated in the test set.

Results: The ensemble classifier showed an area under the curve (AUC) of 0.81 [95% confidence interval (CI), 0.74-0.87] in the training set. In the test set, the ensemble classifier showed an AUC, accuracy, sensitivity, and specificity of 0.81 (95% CI, 0.67-0.96), 77.8%, 78.6%, and 77.3%, respectively. The ensemble classifier achieved the highest performance among all the individual models in the test set.

Conclusions: Radiomic features may be useful biomarkers to predict the DA response in prolactinoma patients.

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgab159DOI Listing

Publication Analysis

Top Keywords

ensemble classifier
16
response prolactinoma
12
prolactinoma patients
12
predict response
12
ensemble machine
8
machine learning
8
radiomic features
8
discrimination analysis
8
classifier
6
response
5

Similar Publications

Multiclass imbalance is a challenging problem in real-world datasets, where certain classes may have a low number of samples because they correspond to rare occurrences. To address the challenge of multiclass imbalance, this paper introduces a novel hybrid cluster-based oversampling and undersampling (HCBOU) technique. By clustering and separating classes into majority and minority categories, this algorithm retains the most information during undersampling while generating efficient data in the minority class.

View Article and Find Full Text PDF

Drug-induced autoimmunity (DIA) is a non-IgE immune-related adverse drug reaction that poses substantial challenges in predictive toxicology due to its idiosyncratic nature, complex pathogenesis, and diverse clinical manifestations. To address these challenges, we developed InterDIA, an interpretable machine learning framework for predicting DIA toxicity based on molecular physicochemical properties. Multi-strategy feature selection and advanced ensemble resampling approaches were integrated to enhance prediction accuracy and overcome data imbalance.

View Article and Find Full Text PDF

Purpose: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a preoperative predictive model for post-DMEK OHT.

Methods: Patients who underwent DMEK at Gangnam Severance Hospital between 2017 and 2024 were included in the study.

View Article and Find Full Text PDF

Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.

View Article and Find Full Text PDF

Prediction of induction motor faults using machine learning.

Heliyon

January 2025

Electrical and Information Engineering Department, Covenant University, P.M.B 1023, Ota, 112212, Ogun State, Nigeria.

Unplanned downtime in industrial sectors presents significant challenges, impacting both production efficiency and profitability. To tackle this issue, companies are actively working towards optimizing their operations and reducing disruptions that hinder their ability to meet customer demands and financial goals. Predictive maintenance, utilizing advanced technologies like data analytics, machine learning, and IoT devices, offers real-time equipment data monitoring and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!