Genetic information acquires additional meaning through epigenetic regulation, the process by which genetically identical cells can exhibit heritable differences in gene expression and phenotype. Inheritance of epigenetic information is a critical step in maintaining cellular identity and organismal health. In Saccharomyces cerevisiae, one form of epigenetic regulation is the transcriptional silencing of two mating-type loci, HML and HMR, by the SIR-protein complex. To focus on the epigenetic dimension of this gene regulation, we conducted a forward mutagenesis screen to identify mutants exhibiting an epigenetic or metastable silencing defect. We utilized fluorescent reporters at HML and HMR, and screened yeast colonies for epigenetic silencing defects. We uncovered numerous independent sir1 alleles, a gene known to be required for stable epigenetic inheritance. More interestingly, we recovered a missense mutation within SIR2, which encodes a highly conserved histone deacetylase. In contrast to sir1Δ, which exhibits states that are either fully silenced or fully expressed, this sir2 allele exhibited heritable states that were either fully silenced or expressed at an intermediate level. The heritable nature of this unique silencing defect was influenced by, but not completely dependent on, changes in rDNA copy number. Therefore, this study revealed a heritable state of intermediate silencing and linked this state to a central silencing factor, Sir2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128386 | PMC |
http://dx.doi.org/10.1093/genetics/iyab041 | DOI Listing |
Front Microbiol
December 2024
ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
Type 1 diabetes (T1D) is characterized by a prolonged autoimmune attack resulting in the massive loss of insulin-producing beta cells. The initiation and progression of T1D depends on a complex interaction between genetic, immunological and environmental factors. Epidemiological, experimental and clinical evidence suggest a link between viral infections, particularly Coxsackievirus type B (CVB), and T1D development.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India.
Unlabelled: DNA methylation is a paramount epigenetic mark that helps balance gene expression post-transcriptionally. Its effect on specific genes determines the plant's holistic development and acclimatization during adversities. L.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka.
Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets.
View Article and Find Full Text PDFCell Res
January 2025
Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy.
View Article and Find Full Text PDFCell Discov
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!