Purpose: Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility.

Methods: FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively.

Results: Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation.

Conclusion: AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-021-03021-zDOI Listing

Publication Analysis

Top Keywords

interfacial protection
16
particle formation
12
ffa particles
12
heterogeneous ps20
12
ps80
10
free fatty
8
fatty acid
8
propensity form
8
form ffa
8
ps20 ps80
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!