Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Petal size determines the value of ornamental plants, and thus their economic value. However, the molecular mechanisms controlling petal size remain unclear in most non-model species. To identify quantitative trait loci and candidate genes controlling petal size in rapeseed (Brassica napus), we performed a genome-wide association study (GWAS) using data from 588 accessions over three consecutive years. We detected 16 significant single nucleotide polymorphisms (SNPs) associated with petal size, with the most significant SNPs located on chromosomes A05 and C06. A combination of GWAS and transcriptomic sequencing based on two accessions with contrasting differences in petal size identified 52 differentially expressed genes (DEGs) that may control petal size variation in rapeseed. In particular, the rapeseed gene BnaA05.RAP2.2, homologous to Arabidopsis RAP2.2, may be critical to the negative control of petal size through the ethylene signaling pathway. In addition, a comparison of petal epidermal cells indicated that petal size differences between the two contrasting accessions were determined mainly by differences in cell number. Finally, we propose a model for the control of petal size in rapeseed through ethylene and cytokinin signaling pathways. Our results provide insights into the genetic mechanisms regulating petal size in flowering plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erab105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!