A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Episodic Memory-Related Imaging Features as Valuable Biomarkers for the Diagnosis of Alzheimer's Disease: A Multicenter Study Based on Machine Learning. | LitMetric

Episodic Memory-Related Imaging Features as Valuable Biomarkers for the Diagnosis of Alzheimer's Disease: A Multicenter Study Based on Machine Learning.

Biol Psychiatry Cogn Neurosci Neuroimaging

Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China; School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China; Department of Psychology, Xinxiang Medical University, Xinxiang, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China. Electronic address:

Published: February 2023

Background: Individualized and reliable biomarkers are crucial for diagnosing Alzheimer's disease (AD). However, lack of accessibility and neurobiological correlation are the main obstacles to their clinical application. Machine learning algorithms can effectively identify personalized biomarkers based on the prominent symptoms of AD.

Methods: Episodic memory-related magnetic resonance imaging (MRI) features of 143 patients with amnesic mild cognitive impairment (MCI) were identified using a multivariate relevance vector regression algorithm. The support vector machine classification model was constructed using these MRI features and verified in 2 independent datasets (N = 994). The neurobiological basis was also investigated based on cognitive assessments, neuropathologic biomarkers of cerebrospinal fluid, and positron emission tomography images of amyloid-β plaques.

Results: The combination of gray matter volume and amplitude of low-frequency fluctuation MRI features accurately predicted episodic memory impairment in individual patients with amnesic MCI (r = 0.638) when measured using an episodic memory assessment panel. The MRI features that contributed to episodic memory prediction were primarily distributed across the default mode network and limbic network. The classification model based on these features distinguished patients with AD from normal control subjects with more than 86% accuracy. Furthermore, most identified episodic memory-related regions showed significantly different amyloid-β positron emission tomography measurements among the AD, MCI, and normal control groups. Moreover, the classification outputs significantly correlated with cognitive assessment scores and cerebrospinal fluid pathological biomarkers' levels in the MCI and AD groups.

Conclusions: Neuroimaging features can reflect individual episodic memory function and serve as potential diagnostic biomarkers of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2020.12.007DOI Listing

Publication Analysis

Top Keywords

mri features
16
episodic memory
16
episodic memory-related
12
alzheimer's disease
8
machine learning
8
patients amnesic
8
classification model
8
cerebrospinal fluid
8
positron emission
8
emission tomography
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!