Under-use of genetic improvement tools and low participation in breeding programmes are key drivers of breeding programmes under-performance. Both aspects are heavily influenced by farmers attitudes which, to date, have not been analysed in an objective and systematic manner. A key factor constraining the implementation of attitudinal studies towards livestock breeding tools is the lack of a reference scale for measuring attitudes. In this research, we provide the livestock breeding sector with such a reference measure. We developed the scale following the standardized psychometric methodologies and statistical tools. Then, as a case study, we used the scale to explore the attitudes of beef and dairy sheep farmers in Australia, New Zealand and Spain and analysed farmer and farming system factors related to those attitudes. Fourteen sheep and beef breed associations facilitated the implementation of a survey of 547 farmers, generating data that was used for the scale evaluation. The relationship between attitudinal factors and farmer and farming system factors was analysed using generalized linear models across and within breeds. The results suggest that the 8-item definitive scale we have developed is appropriate to measure farmer attitudes. We found that attitudes towards genetic improvement tools have two components; i) traditional selection and ii) genetic and genomic selection combined. This means that positive attitudes towards traditional phenotypic selection do not necessarily imply a negative attitude towards genetic and genomic selection tools. Farmer attitudes varied greatly not only across the studied breeds, species and countries, but also within them. High-educated farmers of business-oriented farms tend to have the most negative attitude towards traditional selection. However, attitudes towards genetic and genomic selection tools could not be linked to these factors. Finally, we found that the breed raised had a large effect on farmer attitude. These findings may help in the evolution of breeding programmes by identifying both the farmers most inclined to uptake breeding innovations in the early stages of its establishment and the farmers who would be more reluctant to participate in such programmes, thus informing where to focus extension efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.animal.2020.100062 | DOI Listing |
J Anim Sci Biotechnol
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.
Methods: Eighteen castrated Guanzhong dairy goats (44.
Poult Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China. Electronic address:
This objective of this experiment was to compare and evaluate the performance, egg quality, and immune function of Tianfu green shell laying hens with varying feather growth rates, in order to provide a reference for their rational utilization. A total of 120 one-day-old healthy Tianfu green shell laying hens were classified into the early-feathering (EF) and late-feathering (LF) groups through phenotypic identification of feather length and qPCR molecular identification. Each group was subdivided into four replicates, with 30 chickens in each replicate.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.
View Article and Find Full Text PDFSci Total Environ
January 2025
Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:
Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.
View Article and Find Full Text PDFVet Rec
January 2025
Ministry of Tourism and Antiquities, Aswan Office, Aswan, 81511, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!