A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. | LitMetric

Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs.

Carbohydr Polym

Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India. Electronic address:

Published: May 2021

3D printing, one of its kinds has been a recent technological trend to fabricate complex and patterned biomaterial with controlled precision. With the conventional kick-start of printing metals and plastics, advancements in printing viable cells, polysaccharides or microbes themselves have been achieved. The additive antimicrobial properties in bioinks sourced from organic and inorganic materials have profound implications in tissue engineering. Cellulose, alginate, exopolysaccharides, ceramics and synthetic polymers are integrated as a viable component in inks and used for bio-printing. To date, bacterial infection and immunogenicity pose a potential health risk during a tissue implant or bone substitution. In order to mitigate microbial infection, antimicrobial bioinks with significant antimicrobial potential have been the much sought after strategies. This approach could be an effective frontline defense against microbial interference in tissue engineering and biomedical applications. An overview on the antimicrobial potential of polysaccharides as bioinks for 3D bioprinting has been critically reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.117774DOI Listing

Publication Analysis

Top Keywords

cellulose alginate
8
synthetic polymers
8
tissue engineering
8
antimicrobial potential
8
imminent antimicrobial
4
antimicrobial bioink
4
bioink deploying
4
deploying cellulose
4
alginate eps
4
eps synthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!