Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis.

Stem Cell Res Ther

Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Taipa, Macau, SAR, China.

Published: March 2021

Background: Spinal cord injury (SCI) is a debilitating medical condition that can result in the irreversible loss of sensorimotor function. Current therapies fail to provide an effective recovery being crucial to develop more effective approaches. Mesenchymal stem cell (MSC) exosomes have been shown to be able to facilitate axonal growth and act as mediators to regulate neurogenesis and neuroprotection, holding great therapeutic potential in SCI conditions. This study aimed to assess the potential of human placental MSC (hpMSC)-derived exosomes on the functional recovery and reactivation of endogenous neurogenesis in an experimental animal model of SCI and to explore the possible mechanisms involved.

Methods: The hpMSC-derived exosomes were extracted and transplanted in an experimental animal model of SCI with complete transection of the thoracic segment. Functional recovery, the expression of neural stem/progenitor cell markers and the occurrence of neurogenesis, was assessed 60 days after the treatment. In vitro, neural stem cells (NSCs) were incubated with the isolated exosomes for 24 h, and the phosphorylation levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinases (ERK), and cAMP response element binding (CREB) proteins were assessed by western blot.

Results: Exosomes were successfully isolated and purified from hpMSCs. Intravenous injections of these purified exosomes significantly improved the locomotor activity and bladder dysfunction of SCI animals. Further study of the exosomes' therapeutic action revealed that hpMSC-derived exosomes promoted the activation of proliferating endogenous neural stem/progenitor cells as denoted by the significant increase of spinal SOX2GFAP, PAX6Nestin, and SOX1KI67 cells. Moreover, animals treated with exosomes exhibited a significative higher neurogenesis, as indicated by the higher percentage of DCXMAP 2 neurons. In vitro, hpMSC-derived exosomes promoted the proliferation of NSCs and the increase of the phosphorylated levels of MEK, ERK, and CREB.

Conclusions: This study provides evidence that the use of hpMSC-derived exosomes may constitute a promising therapeutic strategy for the treatment of SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953814PMC
http://dx.doi.org/10.1186/s13287-021-02248-2DOI Listing

Publication Analysis

Top Keywords

hpmsc-derived exosomes
20
exosomes
11
human placental
8
mesenchymal stem
8
stem cells
8
spinal cord
8
cord injury
8
endogenous neurogenesis
8
functional recovery
8
experimental animal
8

Similar Publications

MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation.

Asian J Pharm Sci

February 2024

State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.

Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (Exo) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2 mice and multicellular organoids established from PSC patients.

View Article and Find Full Text PDF

Human placenta mesenchymal stem cell-derived exosomes delay HO-induced aging in mouse cholangioids.

Stem Cell Res Ther

March 2021

State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.

Background: Cholangiocyte senescence is an important pathological process in diseases such as primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Stem cell/induced pluripotent stem cell-derived exosomes have shown anti-senescence effects in various diseases. We applied novel organoid culture technology to establish and characterize cholangiocyte organoids (cholangioids) with oxidative stress-induced senescence and then investigated whether human placenta mesenchymal stem cell (hPMSC)-derived exosomes exerted a protective effect in senescent cholangioids.

View Article and Find Full Text PDF

Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis.

Stem Cell Res Ther

March 2021

Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Taipa, Macau, SAR, China.

Background: Spinal cord injury (SCI) is a debilitating medical condition that can result in the irreversible loss of sensorimotor function. Current therapies fail to provide an effective recovery being crucial to develop more effective approaches. Mesenchymal stem cell (MSC) exosomes have been shown to be able to facilitate axonal growth and act as mediators to regulate neurogenesis and neuroprotection, holding great therapeutic potential in SCI conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!