We studied the propagation of an artificial skyrmion coupled to the vortex domain wall (VDW). We discovered the following effect: depending on the propagation's direction, the dynamics of the coupled skyrmion VDW can be faster than the isolated VDW's velocity. The reason for such behavior is the structural distortion that occurs in the coupled system. We interpret the numerical results in terms of the modified Thiele's equation. In particular, increasing the Thiele's equation counteractive coefficient leads to the perfect fitting with the micromagnetic simulation results.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abee39DOI Listing

Publication Analysis

Top Keywords

vortex domain
8
domain wall
8
artificial skyrmion
8
thiele's equation
8
asymmetry propagation
4
propagation vortex
4
wall artificial
4
skyrmion composite
4
composite system
4
system studied
4

Similar Publications

Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.

Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.

View Article and Find Full Text PDF

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

ACS Nano

January 2025

Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.

View Article and Find Full Text PDF

Temporally deuterogenic plasmonic vortices.

Nanophotonics

March 2024

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA.

Article Synopsis
  • - Over the last ten years, there has been growing interest in plasmonic vortices, which are linked to orbital angular momentum and play a key role in light-matter interactions and plasmonic spin-orbit coupling.
  • - Traditional methods of studying these vortices in the frequency domain lack detailed insights into their evolution, prompting a new investigation into a unique vortex mode that is only observable in the time domain.
  • - The study demonstrates that this temporally varying vortex can be manipulated through design and specific light beams, enhancing our understanding of plasmonic spin-orbit coupling and offering new strategies for optical control in future research.
View Article and Find Full Text PDF

Vectorial structured light beams, characterized by their topological charge and non-uniform polarization distribution, are highly promising beam modes for several applications in different domains of optics and photonics. To harness its potential specifically in optical communication, data encryption, and optical trapping, it is necessary to tailor a multitude of these beams with arbitrary and large topological charge and polarization distribution. However, achieving the above-mentioned requires bulky optical setups that necessitate the superposition of two beams or involve complex material fabrication techniques that can directly generate these beams.

View Article and Find Full Text PDF

Polarization and phase devices for terahertz waves have important applications in terahertz detection, imaging, communication, etc. Spatially variable metal gratings can be used for broad-spectrum, miniaturized, and low-cost terahertz polarization and phase modulation devices. Based on the effective dielectric constant and the theory of light propagation in multilayer media, we obtain the relationship between the transmittance and extinction ratio and the parameters such as the duty cycle of the metal grating, the frequency of the incident terahertz wave, the angle of incidence, the thickness of the metal grating, the refractive index of the substrate, and the thickness of the substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!