Doxorubicin (DOX) is a commonly used anticancer drug, but it is inefficient as a therapeutic due to a lack of targeting. Peptide-tuned self-assembly of DOX offers a strategy to improve targeting for greater efficacy. In this work, we designed and prepared an amphiphilic tumor cell-targeting peptide, P14 (AAAAFFFHHHGRGD), able to encapsulate DOX by self-assembly to form tumor cell-targeting and pH-sensitive nano-micelles. The results showed a critical P14-micelle concentration of 1.758 mg land an average particle size of micelles of 121.64 nm, with entrapment and drug-loading efficiencies of 28.02% ± 1.35% and 12.06% ± 0.59%, respectively. The prepared micelles can release 73.52 ± 1.27% DOX within 24 h in pH 4.5 medium, and the drug cumulative release profile of micelles can be described by the first-order model. Compared with free DOX, the micelles exhibited an increased ability to inhibit tumor cell growth and cause tumor apoptosis, with ICvalues of DOX and P14-DOX micelles against human breast cancer cells (MCF-7) of 0.91 ± 0.07 and 0.75 ± 0.06g ml, respectively, and cellular apoptotic rates of DOX and P14-DOX micelles of 70.3% and 42.4%, respectively. Cellular uptake experiments revealed high concentrations of micelles around and inside MCF-7 cells, demonstrating that micelles can target tumor cells. These results indicate the excellent potential for the application of this amphiphilic peptide as a carrier for small-molecule drugs and suggest a strategy for the design of effective anti-tumor drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abee49DOI Listing

Publication Analysis

Top Keywords

tumor cell-targeting
8
micelles
8
dox p14-dox
8
p14-dox micelles
8
dox
7
tumor
5
synthesis ph-responsive
4
ph-responsive self-assembled
4
self-assembled targeted
4
targeted polypeptide
4

Similar Publications

Mitochondria-Targeted DNA-Based Nanoprobe for In Situ Monitoring of the Activity of the mtDNA Repair Enzyme and Evaluating Tumor Radiosensitivity.

Anal Chem

January 2025

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Article Synopsis
  • Evaluating tumor radiosensitivity is crucial for predicting treatment success, tailoring plans, and reducing side effects, with mtDNA repair activity serving as a key indicator.
  • A novel DNA-based nanoprobe (TPP-Apt-tFNA) is developed to monitor mtDNA repair enzyme activity specifically in tumor cells by targeting mitochondria, enhancing selectivity and accuracy.
  • The research highlights that tumors with high mtDNA repair activity are less sensitive to radiation, indicating potential challenges in radiotherapy outcomes, thus emphasizing the need for new imaging tools in cancer treatment.
View Article and Find Full Text PDF

A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy.

Light Sci Appl

January 2025

Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.

The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited.

View Article and Find Full Text PDF

Screening and identification of vascular endothelial cell targeting peptide in gastric cancer through novel integrated in vitro and in vivo strategy.

BMC Cancer

December 2024

Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, P.R. China.

Purpose: Antiangiogenesis therapy has become a hot field in cancer research. Given that tumor blood vessels often express specific markers related to angiogenesis, the study of these heterogeneous molecules in different tumor vessels holds promise for advancing anti-angiogenic therapy. Previously using phage display technology, we identified a targeting peptide named GX1 homing to gastric cancer vessels for the first time.

View Article and Find Full Text PDF

Core-shell vector-mediated co-delivery of CRISPR/Cas9 system and hydrophobic drugs against triple-negative breast cancer stem cells.

J Control Release

December 2024

Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, DuShuHu High Education Zone, Suzhou, Jiangsu Province 215123, China. Electronic address:

Cancer stem cells (CSCs) play an important role in the development of triple-negative breast cancer (TNBC), including metastasis, invasion, tumorigenicity, and drug resistance. Moreover, non-CSCs can spontaneously transform into CSCs in special tumor microenvironments, thereby leading to poor prognosis or even failed treatments. Therefore, reversing tumor stem cells into normal tumor cells in a sustained-acting manner is a promising strategy.

View Article and Find Full Text PDF

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!