Characterization of innate immune response to Brucella melitensis infection in goats with permissive or restrictive phenotype for Brucella intramacrophagic growth.

Vet Immunol Immunopathol

Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina. Electronic address:

Published: April 2021

Caprine brucellosis is a chronic, world-wide distributed disease which causes reproductive failure in goats and Brucella melitensis, its causative agent, bears a great zoonotic potential. There is evidence suggesting that some cattle and pigs have an innate ability to resist Brucella infection, but this has not yet been investigated in goats. In this study, we compared caprine macrophages that exhibit extreme restriction and permissiveness to B. melitensis' intracellular growth in vitro. Monocyte derived macrophages (MDMs) from 110 female goats were cultured and challenged in vitro with B. melitensis 16 M. After initial screening, 18 donor goats were selected based on their macrophages ability to restrict or allow bacterial intracellular growth and some elements of humoral and cellular immunity were studied in depth. MDMs that were able to restrict the pathogen's intracellular growth showed enhanced bacterial internalization, although there were no differences between groups in the production of reactive oxygen and nitrogen intermediates following 48 h treatment with heat-killed B. melitensis. Moreover, there were no differences between groups in the level of antibodies reacting with keyhole limpet hemocyanin (natural antibodies, NAbs) or with Brucella LPS antigens (cross-reacting antibodies, CrAbs), although a strong positive correlation between individual levels of IgM NAbs and IgM CrAbs was detected. Altogether, these results represent an initial step in understanding innate primary host response to B. melitensis, and deciphering which mechanisms may determine a successful outcome of the infection in goats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2021.110223DOI Listing

Publication Analysis

Top Keywords

intracellular growth
12
brucella melitensis
8
infection goats
8
differences groups
8
goats
6
brucella
5
melitensis
5
characterization innate
4
innate immune
4
immune response
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.

View Article and Find Full Text PDF

Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular senescence, a known anti-tumour mechanism, has been observed in several types of cancer. However, the regulatory interplay of circRNAs with cellular senescence in pancreatic cancer (PC) is still unknown.

View Article and Find Full Text PDF

Quantitative DIA-based proteomics unveils ribosomal biogenesis pathways associated with increased final size in three-year-old Chinese mitten crab (Eriocheir sinensis).

BMC Genomics

January 2025

Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.

Background: Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!