Aniline, a synthetic compound widely used in industrial and pesticide production, is a potential environmental pollutant. The removal of aniline is extremely important to minimize threats to human health and the surrounding environment. The objectives of this study were to investigate the removal efficiency and physiological response of Salix. babylonica cuttings to aniline pollution. Photosynthesis, chlorophyll fluorescence, spectral reflectance and the concentration of aniline in leaves, stems and roots were analysed. The experiment showed that S. babylonica has a strong removal effect on aniline wastewater. Cuttings from S. babylonica stems and roots played an important role in accumulating aniline. However, this increase in aniline concentration was dose dependent and was not always linear. With increasing aniline concentration in S. babylonica was increasingly stressed, with negative impacts on photosynthesis, chlorophyll fluorescence and spectral reflectance index in S. babylonica leaves. These results indicate that non-stomatal limitations are the main reason for the reduction in Pn in S. babylonica leaves due to chlorophyll structure destruction under aniline stress. In addition, aniline concentrations result in an unbalanced distribution of excitation energy between the two light systems, thereby hindering photosynthetic electron transfer and restricting the efficient operation of photosynthesis. Salix babylonica can endure moderate concentrations of aniline and has potential for the phyto-management of aniline-polluted wastewater, although further studies are needed using polluted wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2021.112124 | DOI Listing |
Plants (Basel)
December 2024
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Diesel spills and nuclides pollution cause global ecosystem and human health problems. The remediation of contaminated soil using woody plants has received considerable attention. Differences in plant species and sex can lead to differences in tolerance to various stressors.
View Article and Find Full Text PDFEcol Evol
December 2024
Institute of Entomology, College of Agriculture Yangtze University Jingzhou China.
The (Motschulsky) is a phytophagous pest that is seriously endangering Linn. and Koidz. Poor control can damage local ecosystems, resulting in economic losses and management risks.
View Article and Find Full Text PDFMolecules
November 2024
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
The herbicide fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl (phenyl)]-4(1H)-pyridone) interferes with carotenoid biosynthesis in plants by inhibiting the conversion of phytoene to phytofluene. Fluridone also indirectly inhibits the biosynthesis of abscisic acid and strigolactones, and therefore, our study indirectly addresses the effect of reduced ABA on the roots and leaf buds development in stem cuttings of L. 'Tortuosa'.
View Article and Find Full Text PDFFront Plant Sci
October 2024
College of Ecology and Environment, Xinjiang University, Urumqi, China.
To investigate the effects of various types of farmland shelterbelts on soil quality and soil bacterial community diversity, this study focused on soil samples from four different shelterbelt types in the Alaer reclamation area, including Oliv.- Carrière (PP), L.- Oliv.
View Article and Find Full Text PDFSci Rep
October 2024
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
Ectomycorrhizal fungi (EMF) are key symbiotic microbial components for the growth and health of trees in urban greenspace habitats (UGSHs). However, the current understanding of EMF diversity in UGSHs remains poor. Therefore, in this study, using morphological classification and molecular identification, we aimed to investigate EMF diversity in three EMF host plants: Cedrus deodara in the roadside green belt, and C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!