A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation. | LitMetric

Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation.

J Proteomics

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China. Electronic address:

Published: May 2021

Persistent plant viruses multiply and circulate inside insect vectors following the route of midgut-hemolymph-salivary gland. Currently, how viruses interact with insect vectors after they are released into hemolymph is not entirely clear. In this study, we found that the hemolymph and fat body (HF) contained the highest Rice stripe virus (RSV) levels. Proteomic analysis on RSV-free and RSV-infected HF identified 156 differentially expressed proteins (DEPs), with the majority of them participating in metabolism, transportation, and detoxification. The RNA binding protein esf2 was the most downregulated protein. Knocking down the expression of esf2 did not influence the RSV burden, but caused the lethal effect to L. striatellus. In contrast, the mRNA decay protein ZFP36L1 was 69% more abundant upon RSV infection, and suppression of ZFP36L1 significantly increased the RSV burden. Our results reveal the potential role of ZFP36L1 in restricting the viral proliferation, and provide valuable clues for unravelling the interaction between RSV and L. striatellus in HF. SIGNIFICANCE: More than 76% of plant viruses are transmitted by insect vectors. For persistent propagative transmission, plant viruses multiply and circulate inside insects following the route of midgut-hemolymph-salivary gland. However, how viruses interact with vector insects after they are released into hemolymph is not entirely clear. Our study investigated the influence of rice stripe virus (RSV) on insect hemolymph and fat body by iTRAQ labeling method. Among the 156 differentially expressed proteins (DEPs) identified, two proteins associated with mRNA metabolism were selected for function analysis. We found that the mRNA decay activator protein ZFP36L1 influenced the RSV proliferation, and RNA binding protein esf2 caused the lethal effect to L. striatellus. Our results provide valuable clues for unveiling the interaction between RSV and L. striatellus, and might be useful in pest management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2021.104184DOI Listing

Publication Analysis

Top Keywords

rice stripe
12
stripe virus
12
plant viruses
12
insect vectors
12
proteomic analysis
8
reveal potential
8
potential role
8
role zfp36l1
8
viral proliferation
8
viruses multiply
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!