The macrophage capping protein CAPG belongs to the gelsolin superfamily which modulates actin dynamics by capping the growing end of actin filaments in a Ca- and PIP-dependent manner resulting in polymerization inhibition of actin filaments. In the last years, additional functions for CAPG in transcription regulation were described and higher CAPG amounts have been linked to increased invasiveness and migration behavior in different human tumor entities like e.g. glioblastoma. Nevertheless, there is a lack of knowledge how additional functions of CAPG are regulated. As CAPG contains several cysteine residues which may be accessible to oxidation we were especially interested to investigate how alterations in the cysteine oxidation state may influence the function, localization, and regulation of CAPG. In the present study, we provide strong evidence that CAPG is a redox-sensitive protein and identified two cysteines: C282 and C290 as reversibly oxidized in glioblastoma cell lines. Whereas no evidence could be found that the canonical actin capping function of CAPG is redox-regulated, our results point to a novel role of the identified cysteines in the regulation of cell migration. Along with this, we found a localization shift out of the nucleus of CAPG and RAVER1, a potential interaction partner identified in our study which might explain the observed altered cell migration properties. The newly identified redox sensitive cysteines of CAPG could perspectively be considered as new targets for controlling tumor invasive properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2021.02.038 | DOI Listing |
Cell Death Discov
January 2025
Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
The aging process is marked by a time-dependent deterioration in cellular functions, particularly the immune and neural systems. Understanding the phenotype acquisition of microglia, the sentinel immune cells of the brain, is crucial for understanding the nature of age-related neurological diseases. However, the specific phenotype adopted by microglia during aging remains a subject of debate and is contingent on the chosen experimental model.
View Article and Find Full Text PDFHereditas
December 2024
Dalian Medical University, Dalian, Liaoning Province, 116000, China.
Background: Glioma is a malignancy with challenging clinical treatment and poor prognosis. Platelets are closely associated with tumor growth, propagation, invasion, and angiogenesis. However, the role of platelet-related genes in glioma treatment and prognosis remains unclear.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Hunan, 410006, China. Electronic address:
Ethnopharmacological Relevance: Hepatocellular Carcinoma (HCC) is a major health concern with limited treatment options. Traditional Chinese Medicine (TCM) offers potential therapeutic approaches for HCC, and SPXJF, a TCM formula, has shown promise in clinical observations for prolonging the survival of liver cancer patients.
Aim Of The Study: To investigate the anti-tumor effects of SPXJF on HCC cells and explore its potential mechanism, focusing on ferroptosis induction.
J Biomol Struct Dyn
December 2024
Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India.
CapG, an enzyme expressed by , catalyzes an epimerization reaction to synthesize -acetyl-L-fucosamine, a constituent of capsule involved in pathogenesis. This protein has two domains, exists as the homohexamers in the solution, and usually produces products at hundred-nanomolar concentrations. To determine the folding-unfolding mechanism and the oligomeric form of CapG, particularly at low concentrations, we have investigated a recombinant CapG (rCapG) using different probes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2024
Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!