A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. | LitMetric

Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light.

Exp Eye Res

Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), 1716 University Blvd., Birmingham, AL, United States. Electronic address:

Published: May 2021

We asked if emmetropia, achieved in broadband colony lighting, is maintained in narrow-band cyan light that is well focused in the emmetropic eye, but does not allow for guidance from longitudinal chromatic aberrations (LCA) and offers minimal perceptual color cues. In addition, we examined the response to a -5 D lens in this lighting. Seven tree shrews from different litters were initially housed in broad-spectrum colony lighting. At 24 ± 1 days after eye opening (Days of Visual Experience, DVE) they were housed for 11 days in ambient narrow-band cyan light (peak wavelength 505 ± 17 nm) selected because it is in focus in an emmetropic eye. Perceptually, monochromatic light at 505 nm cannot be distinguished from white by tree shrews. While in cyan light, each animal wore a monocular -5 D lens (Cyan -5 D eyes). The fellow eye was the Cyan no-lens eye. Daily awake non-cycloplegic measures were taken with an autorefractor (refractive state) and with optical low-coherence optical interferometry (axial component dimensions). These measures were compared with the values of animals raised in standard colony fluorescent lighting: an untreated group (n = 7), groups with monocular form deprivation (n = 7) or monocular -5 D lens treatment (n = 5), or that experienced 10 days in total darkness (n = 5). Refractive state at the onset of cyan light treatment was low hyperopia, (mean ± SEM) 1.4 ± 0.4 diopters. During treatment, the Cyan no-lens eyes became myopic (-2.9 ± 0.3 D) whereas colony lighting animals remained slightly hyperopic (1.0 ± 0.2 D). Initially, refractions of the Cyan -5 D eyes paralleled the Cyan no-lens eyes. After six days, they gradually became more myopic than the Cyan no-lens eyes; at the end of treatment, the refractions were -5.4 ± 0.3 D, a difference of -2.5 D from the Cyan no-lens eyes. When returned to colony lighting at 35 ± 1 DVE, the no-lens eye refractions rapidly recovered towards emmetropia but, as expected, the refraction of the -5 D eyes remained near -5 D. Vitreous chamber depth in both eyes was consistent with the refractive changes. In narrow-band cyan lighting the emmetropization mechanism did not maintain emmetropia even though the light initially was well focused. We suggest that, as the eyes diverged from emmetropia, there were insufficient LCA cues for the emmetropization mechanism to utilize the developing myopic refractive error in order to guide the eyes back to emmetropia. However, the increased myopia in the Cyan -5 D eyes in the narrow-band light indicates that the emmetropization mechanism nonetheless detected the presence of the lens-induced refractive error and responded with increased axial elongation that partly compensated for the negative-power lens. These data support the conclusion that the emmetropization mechanism cannot maintain emmetropia in narrow-band lighting. The additional myopia produced in eyes with the -5 D lens shows that the emmetropization mechanism responds to multiple defocus-related cues, even under conditions where it is unable to use them to maintain emmetropia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087652PMC
http://dx.doi.org/10.1016/j.exer.2021.108525DOI Listing

Publication Analysis

Top Keywords

cyan light
20
cyan no-lens
20
emmetropization mechanism
20
maintain emmetropia
16
narrow-band cyan
16
colony lighting
16
no-lens eyes
16
cyan
14
tree shrews
12
eyes
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!