Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phosphorylated metabolites are omnipresent in cells, but their analytical characterization faces several technical hurdles. Here, we detail an improved NMR workflow aimed at assigning the high-resolution subspectrum of the phospho-metabolites in a complex mixture. Combining a pure absorption -resolved spectrum (Pell, A. J.; 2007, 189 (2), 293-299) with alternate on- and off-switching of the P coupling interaction during the evolution with a pure in-phase (PIP) HSQMBC experiment (Castañar, L.; 2014, 53 (32), 8379-8382) without or with total correlation spectroscopy (TOCSY) transfer during the insensitive nuclei enhancement by polarization transfer (INEPT) gives access to selective identification of the individual subspectra of the phosphorylated metabolites. Returning to the initial -res spectra, we can extract with optimal resolution the full trace for the individual phospho-metabolites, which can then be transposed on the high-resolution quantitative one dimensional spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c04056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!