Defect influences on the photoactivity of ZnO nanoparticles prepared by a powdered coconut water (ACP) assisted synthesis have been studied. The crystalline phase and morphology of ZnO nanoparticles were effectively controlled by adjusting the calcination temperature (400-700 °C). An induced transition of hybrid Zn(CO)(OH)/ZnO nanoparticles to single-phase ZnO nanoparticles was obtained at 480 °C. The morphological analysis revealed a formation of ZnO nanoparticles with semispherical (∼6.5 nm)- and rod-like (∼96 nm) shapes when the calcination temperatures were 400 and 700 °C, respectively. Photoluminescence characterizations revealed several defects types in the samples with and being in the self-assembly of semispherical- and rod-like ZnO nanoparticles. The photocatalytic activity of the ZnO nanoparticles was examined by assessing the degradation of methylene blue in an aqueous solution under low-intensity visible-light irradiation (∼3 W m). The results point toward the self-assembly of semispherical- and rod-like ZnO nanoparticles that had significantly better photocatalytic activity (∼31%) in comparison to that of spherical-agglomerated- or near-spherical-like species within 120 min of irradiation. The possible photocatalytic mechanism is discussed in detail, and the morphology-driven intrinsic [+] defects are proposed to be among the active sites of the ZnO nanoparticles enhancing the photocatalytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03327 | DOI Listing |
Pharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil.
Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No. 11757 Cairo, Egypt.
Daru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!