The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma.

Cancer Biol Med

Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.

Published: March 2021

Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185864PMC
http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0140DOI Listing

Publication Analysis

Top Keywords

esophageal cancer
12
cxcl12/cxcr4 axis
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
c-x-c motif
8
motif chemokine
8
esophageal
5
biological role
4
cxcl12/cxcr4
4

Similar Publications

Perioperative Chemotherapy or Preoperative Chemoradiotherapy in Esophageal Cancer.

N Engl J Med

January 2025

From Bielefeld University, Medical School and University Medical Center Ostwestfalen-Lippe, Campus Hospital Lippe, Detmold, Germany (J.H.); the Department of Radiation Oncology, Medical University of Graz, Graz, Austria (T.B.); the Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany (C.S.); the Institute of Surgical Pathology, University Medical Center Freiburg, Germany (P.B.); the Department of Surgery, University Medical Center Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (B.K., T.K.); Comprehensive Cancer Center Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany (R.C.); the Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany (S.U.); the Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R.I.); the Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute and San Raffaele Vita-Salute University, Milan (I.G.); the Department of General, Visceral, Thoracic, and Endocrine Surgery, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Minden, Germany (B.G.); the Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany (M.G.); the Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University Medical Center Schleswig-Holstein-Campus Kiel, Kiel, Germany (B.R.); the Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany (J.F.L.); the Department of General, Visceral, Cancer, and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany (C.B.); the Department of Hematology and Oncology, Sana Klinikum Offenbach, Offenbach am Main, Germany (E.R.); the Department of Surgery, Klinikum Dortmund, Klinikum der Universität Witten-Herdecke, Dortmund, Germany (M.S.); the Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany (F.B.); the Department of Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany (G.F.); the Department of Hematology, Oncology, and Cancer Immunology, Charité-University Medicine Berlin, Campus Virchow-Klinikum, Berlin (P.T.-P.); the Department of General, Visceral, Cancer, and Transplantation Surgery, University Hospital Essen, Essen, Germany (U.P.N.); the Department of General, Visceral, and Transplantation Surgery, University Hospital Muenster, Muenster, Germany (A.P.); the Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany (D.I.); the Division of Gastroenterology, Rheumatology, and Infectology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin (S.D.); the Department of Surgery, Robert Bosch Hospital, Stuttgart, Germany (T.S.); the Department of Surgery, University Medical Center Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany (C.K.); the Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany (S.Z.); the Department of General, Visceral, and Transplant Surgery, Ludwig Maximilian University Hospital, Munich, Germany (J.W.); the Department of Internal Medicine I, Klinikum Mutterhaus der Borromaerinnen, Trier, Germany (R.M.); the Departments of Hematology, Oncology, and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany (G.I.); the Department of General, Visceral, and Transplant Surgery, University Medical Center Mainz, Mainz, Germany (P.G.); and the Department of Medicine II, University Cancer Center Leipzig, Cancer Center Central Germany, University Medical Center Leipzig, Leipzig, Germany (F.L.).

Background: The best multimodal approach for resectable locally advanced esophageal adenocarcinoma is unclear. An important question is whether perioperative chemotherapy is preferable to preoperative chemoradiotherapy.

Methods: In this phase 3, multicenter, randomized trial, we assigned in a 1:1 ratio patients with resectable esophageal adenocarcinoma to receive perioperative chemotherapy with FLOT (fluorouracil, leucovorin, oxaliplatin, and docetaxel) plus surgery or preoperative chemoradiotherapy (radiotherapy at a dose of 41.

View Article and Find Full Text PDF

Background: Altered glucose metabolism is a critical characteristic from the beginning stage of esophageal squamous cell carcinoma (ESCC), and the phenomenon is presented as a pink-color sign under endoscopy after iodine staining. Therefore, calculating the metabolic score based on the glucose metabolic gene sets may bring some novel insights, enabling the prediction of prognosis and the identification of treatment choices for ESCC.

Methods: A total of 8, 99, and 140 individuals from The Gene Expression Omnibus database, The Cancer Genome Atlas database, and the Memorial Sloan Kettering Cancer Center, respectively, were encompassed in the investigation.

View Article and Find Full Text PDF

Interobserver and sequence variability in the delineation of pelvic organs at risk on magnetic resonance images.

Radiol Oncol

January 2025

1State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China.

Background: This study evaluates the contouring variability among observers using MR images reconstructed by different sequences and quantifies the differences of automatic segmentation models for different sequences.

Patients And Methods: Eighty-three patients with pelvic tumors underwent T1-weighted image (T1WI), contrast enhanced Dixon T1-weighted (T1dixonc), and T2-weighted image (T2WI) MR imaging on a simulator. Two observers performed manual delineation of the bladder, anal canal, rectum, and femoral heads on all images.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of patient setup errors on the dosimetry and radiobiological models of intensity-modulated radiotherapy (IMRT) for esophageal cancer.

Methods And Materials: This retrospective study with 56 patients in thermoplastic mask (TM) and vacuum bag (VB) groups utilized real setup-error (RSE) data from cone-beam CT scans to generate simulated setup-error (SSE) data following a normal distribution. The SSE data were applied to simulate all treatment fractions per patient by shifting the plan isocenter and recalculating the dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!