Brain and nerves affected before the lungs in COVID-19.

Acta Neurol Scand

Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP), São Paulo, Brazil.

Published: June 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251285PMC
http://dx.doi.org/10.1111/ane.13413DOI Listing

Publication Analysis

Top Keywords

brain nerves
4
nerves lungs
4
lungs covid-19
4
brain
1
lungs
1
covid-19
1

Similar Publications

Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality.

BMC Med

January 2025

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.

Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.

Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.

View Article and Find Full Text PDF

The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin.

Vitam Horm

January 2025

Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:

The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.

View Article and Find Full Text PDF

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Impact of sleep deprivation on dynamic functional connectivity states.

Handb Clin Neurol

January 2025

Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Sleep deprivation (SD) is an experimental procedure to study the effects of sleep loss on the human brain. Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), have been pivotal in studying these effects. The present chapter aims to retrace the state of the art regarding the literature that examines the SD effects on the brain through functional connectivity (FC) evaluated in fMRI and EEG settings, separately.

View Article and Find Full Text PDF

Introduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!