Background: Accurate estimating glomerular filtration rate (GFR) is crucial both in clinical practice and epidemiological survey. We incorporated semi-supervised learning technology to improve GFR estimation performance.
Methods: AASK [African American Study of Kidney Disease and Hypertension], CRIC [Chronic Renal Insufficiency Cohort] and DCCT [Diabetes Control and Complications Trial] studies were pooled together for model development, whereas MDRD [Modification of Diet in Renal Disease] and CRISP [Consortium for Radiological Imaging Studies of Polycystic Kidney Disease] studies for model external validation. A total of seven variables (Serum creatinine, Age, Sex, Black race, Diabetes status, Hypertension and Body Mass Index) were included as independent variables, while the outcome variable GFR was measured as the urinary clearance of I-iothalamate. The revised CKD-EPI [Chronic Kidney Disease Epidemiology Collaboration] creatinine equations was selected as benchmark for performance comparisons. Head-to-head performance comparisons from four-variable to seven-variable combination were conducted between revised CKD-EPI equations and semi-supervised models.
Results: In each independent variables combination, the semi-supervised models consistently achieved superior results in all three performance indicators compared with corresponding revised CKD-EPI equations in the external validation data set. Furthermore, compared with revised four-variable CKD-EPI equation, the seven-variable semi-supervised model performed less biased (mean of difference: 0.03 [- 0.28, 0.34] vs 1.53 [1.28, 1.85], P < 0.001), more precise (interquartile range of difference: 7.94 [7.37, 8.50] vs 8.28 [7.76, 8.83], P = 0.1) and accurate (P30: 88.9% [87.4%, 90.2%] vs 86.0% [84.4%, 87.4%], P < 0.001.
Conclusions: The superior performance of the semi-supervised models during head-to-head comparisons supported the hypothesis that semi-supervised learning technology could improve GFR estimation performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11255-020-02771-w | DOI Listing |
Front Physiol
December 2024
Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, Affiliated to Shenzhen University, Shenzhen, Guangdong Province, China.
Introduction: This study aimed to develop a deep learning-based method for interpreting magnetic resonance imaging (MRI) scans of temporomandibular joint (TMJ) anterior disc displacement (ADD) and to formulate an automated diagnostic system for clinical practice.
Methods: The deep learning models were utilized to identify regions of interest (ROI), segment TMJ structures including the articular disc, condyle, glenoid fossa, and articular tubercle, and classify TMJ ADD. The models employed Grad-CAM heatmaps and segmentation annotation diagrams for visual diagnostic predictions and were deployed for clinical application.
Front Oncol
December 2024
Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China.
Background And Purpose: Distant metastasis in bladder cancer is linked to poor prognosis and significant mortality. Machine learning (ML), a key area of artificial intelligence, has shown promise in the diagnosis, staging, and treatment of bladder cancer. This study aimed to employ various ML techniques to predict distant metastasis in patients with bladder cancer.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.
Objectives: The accurate assessment of lymph node metastasis (LNM) can facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH) in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively evaluate LNM in cervical AC/ASC.
Materials And Methods: A total of 652 patients from a multicenter were enrolled and randomly allocated into primary, internal, and external validation cohorts.
J Natl Cancer Cent
December 2024
Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
Background: Tumor-derived exosomes are involved in tumor progression and immune invasion and might function as promising noninvasive approaches for clinical management. However, there are few reports on exosom-based markers for predicting the progression and adjuvant therapy response rate among patients with clear cell renal cell carcinoma (ccRCC).
Methods: The signatures differentially expressed in exosomes from tumor and normal tissues from ccRCC patients were correspondingly deregulated in ccRCC tissues.
Health Care Sci
December 2024
Centre for Quantitative Medicine, Duke-NUS Medical School Singapore.
Background: Pneumothorax is a medical emergency caused by the abnormal accumulation of air in the pleural space-the potential space between the lungs and chest wall. On 2D chest radiographs, pneumothorax occurs within the thoracic cavity and outside of the mediastinum, and we refer to this area as "lung + space." While deep learning (DL) has increasingly been utilized to segment pneumothorax lesions in chest radiographs, many existing DL models employ an end-to-end approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!