Photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a promising solution to the inherent lack of sensitivity in NMR spectroscopy. It is particularly interesting in biological systems since it operates in water, at room temperature, and it can be repeated if the bleaching of the system can be controlled. However, the photo-CIDNP signal enhancement is well below those of other hyperpolarization techniques. While DNP, PHIP, and SABRE reach polarization enhancements of 10 to 10-fold, photo-CIDNP enhancement is typically only one order of magnitude for H and two orders of magnitude for C in the amino-acids tryptophan and tyrosine. Here we report on a photo-oxidation product of tryptophan that is strongly photo-CIDNP active under continuous wave light irradiation. In conjunction with the dye Atto Thio 12, a H signal enhancement of 120-fold was observed on a 600 MHz spectrometer, while at 200 MHz the enhancement was 380-fold. These enhancements in signal to noise correspond to a reduction in measurement time of 14 400-fold and 144 400-fold, respectively. The enhancement for C is estimated to be over 1200-fold at 600 MHz which corresponds to an impressive measurement time reduction of 1 440 000-fold. This photo-CIDNP active oxidation product of tryptophan has been identified to be 3α-hydroxypyrroloindole. The reasons for its improved signal enhancement compared to tryptophan have been further investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp06068b | DOI Listing |
Nanotechnology
December 2024
Department of Physics, King Faisal University, King Faisal University P.O. 380 Ahsaa 31982, Al Ahsa, 31982, SAUDI ARABIA.
An anisotropic plasmonic trimer is proposed as an effective spectroscopic amplifier for the maximum signal enhancement of the Hyper-Raman Scattering (HRS) process. The three-particle system is composed of asymmetric Au nanorings arranged collinearly in a J-aggregate configuration and illuminated by a longitudinally polarized light. The optical properties of the considered trimer have been numerically simulated by the Finite-Difference Time-Domain (FDTD) method.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.
Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
School of Mechatronic Engineering, Southwest Petroleum University, Chendu 610500, China.
The early fault characteristics of rolling bearings are weak, especially in a strong noise environment, which are more difficult to extract; therefore, a method based on wavelet packet decomposition, multi-verse optimizer, and maximum correlated kurtosis deconvolution for weak fault feature extraction of rolling bearings is proposed. First, the original vibration signal is decomposed using wavelet packet decomposition, followed by proposing a signal reconstruction method combining the Pearson correlation coefficient and energy ratio to effectively remove noise from the original signal. Second, the parameters L and M of Maximum Correlated Kurtosis Deconvolution (MCKD) are optimized using the multi-verse optimizer algorithm to obtain optimal filter settings.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai, China.
Infrared photoluminescence (PL) spectroscopy with micron-scale spatial resolution is essential for the optoelectronic characterization of narrow-gap microstructures and single defects, yet it poses significant challenges due to the exceedingly weak PL signal and strong background thermal emission. This work introduces an infrared micro-PL (μPL) mapping system that achieves a spatial resolution of ∼2 μm, leveraging the inherent advantages of the step-scan Fourier transform infrared spectrometer-based modulated PL technique in the mid- and far-infrared regions. The configuration of the experimental system is described, and a theoretical upper limit of spatial resolution is derived to be about 1.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.
Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!