Hypothesis: Years of implantation, surgical insertion approach, and electrode length will impact the volume of new tissue formation secondary to cochlear implantation.

Background: New tissue formation, fibrosis, and osteoneogenesis after cochlear implantation have been implicated in increasing impedance and affecting performance of the cochlear implant.

Methods: 3-D reconstructions of 15 archival human temporal bones from patients with a history of cochlear implantation (CI) were generated from H&E histopathologic slides to study factors which affect volume of tissue formation.

Results: Years of implantation was a predictor of osteoneogenesis (r = 0.638, p-value = 0.011) and total new tissue formation (r = 0.588, p-value = 0.021), however not of fibrosis (r = 0.235, p-value = 0.399). Median total tissue formation differed between cochleostomy and round window insertions, 25.98 and 10.34%, respectively (Mann-Whitney U = 7, p = 0.018). No correlations were found between electrode length or angular insertion depth and total new tissue (p = 0.192, p = 0.35), osteoneogenesis (p = 0.193, p = 0.27), and fibrosis (p = 0.498, p = 0.83), respectively. However, the type II error for electrode length and angular insertion depth ranged from 0.73 to 0.90, largely due to small numbers of the shorter electrodes.

Conclusions: With numbers of cochlear implant recipients increasing worldwide, an understanding of how to minimize intracochlear changes from implantation is important. The present study demonstrates that increasing years of implantation and inserting electrodes via a cochleostomy compared with a round window approach are associated with significantly greater degree of new tissue volume formation. While previous studies have demonstrated increased intracochlear damage in the setting of translocation with longer electrodes, length, and angular insertion depth of CI electrodes were not associated with increased tissue formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282738PMC
http://dx.doi.org/10.1097/MAO.0000000000003106DOI Listing

Publication Analysis

Top Keywords

tissue formation
24
years implantation
12
electrode length
12
total tissue
12
length angular
12
angular insertion
12
insertion depth
12
tissue
9
3-d reconstructions
8
human temporal
8

Similar Publications

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!