The rupture of a polymer chain maintained at temperature T under fixed tension is prototypical to a wide array of systems failing under constant external stress and random perturbations. Past research focused on analytic and numerical studies of the mean rate of collapse of such a chain. Surprisingly, an analytic calculation of the probability distribution function (PDF) of collapse rates appears to be lacking. Since rare events of rapid collapse can be important and even catastrophic, we present here a theory of this distribution, with a stress on its tail of fast rates. We show that the tail of the PDF is a power law with a universal exponent that is theoretically determined. Extensive numerics validate the offered theory. Lessons pertaining to other problems of the same type are drawn.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.085501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!