Small-pore iron silicate MS-1 (Minho-Sofia, solid number 1) with a 3D porous system, an analogue of the rare mineral imandrite, has been synthesized and characterized. This material is the lowest framework density iron silicate, one of the most siliceous (Si/Fe = 6) iron silicates, the first iron cyclosilicate achieved at hydrothermal conditions, and the only synthetic iron-based member of the lovozerite mineral group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c03487DOI Listing

Publication Analysis

Top Keywords

iron silicate
12
iron
5
three-dimensional microporous
4
microporous iron
4
silicate imandrite
4
imandrite type
4
type structure
4
structure small-pore
4
small-pore iron
4
silicate ms-1
4

Similar Publications

Seagrasses represent a significant class of marine foundation species, yet the distribution of seagrasses in the Yellow Sea and Bohai Sea remains uncertain, thereby impeding the efficacy of conservation and restoration practices. In this study, the spatial and temporal distribution pattern of seagrasses was simulated by the MaxEnt model based on the construction of marine environment and human activity datasets. The main controlling factors affecting seagrass potential distribution were analyzed, and the response of seagrass distribution to global change was clarified.

View Article and Find Full Text PDF

To investigate the influence of alkali metal compounds in different forms on the sintering mineralization process of iron ore, the basic sintering characteristics of iron ore with alkali metal contents ranging from 0 to 4% were measured using the micro-sintering method, and the influence mechanism was analyzed using thermodynamic analysis and first-principles calculations. The results showed that (1) the addition of KCl/NaCl increased the lowest assimilation temperature (LAT) and the index of liquid-phase fluidity (ILF), while that of KCO/NaCO decreased the LAT but increased the ILF of iron ore. (2) The pores formed by the volatilization of KCl/NaCl suppressed the diffusion of Fe and Ca, which inhibited the formation of silico-ferrite of calcium and aluminum (SFCA).

View Article and Find Full Text PDF

Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.

View Article and Find Full Text PDF

Zeolites are a large family of minerals and the most studied is the naturally occurring clinoptilolite. They possess anti-inflammatory, antioxidant, and detoxifying properties which makes them valuable for medicinal use. Element analysis of zeolite's composition is necessary for its precise chemical characterization, and within this work development of a suspension method for the determination of manga nese, iron, and zinc by total reflection X-ray fluorescence spec-trometry (TXRF) was presented.

View Article and Find Full Text PDF

Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!