Traditionally, biogenic volatile organic compound (BVOC) emissions are often considered a unidirectional flux, from the ecosystem to the atmosphere, but recent studies clearly show the potential for bidirectional exchange. Here we aimed to investigate how warming and leaf litter addition affect the bidirectional exchange (flux) of BVOCs in a long-term field experiment in the Subarctic. We also assessed changes in net BVOC fluxes in relation to the time of day and the influence of different plant phenological stages. The study was conducted in a full factorial experiment with open top chamber warming and annual litter addition treatments in a tundra heath in Abisko, Northern Sweden. After 18 years of treatments, ecosystem-level net BVOC fluxes were measured in the experimental plots using proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). The warming treatment increased monoterpene and isoprene emissions by ≈50%. Increasing temperature, due to diurnal variations, can both increase BVOC emission and simultaneously, increase ecosystem uptake. For any given treatment, monoterpene, isoprene, and acetone emissions also increased with increasing ambient air temperatures caused by diurnal variability. Acetaldehyde, methanol, and sesquiterpenes decreased likely due to a deposition flux. For litter addition, only a significant indirect effect on isoprene and monoterpene fluxes (decrease by ~50%-75%) was observed. Litter addition may change soil moisture conditions, leading to changes in plant species composition and biomass, which could subsequently result in changes to BVOC emission compositions. Phenological stages significantly affected fluxes of methanol, isoprene and monoterpenes. We suggest that plant phenological stages differ in impacts on BVOC net emissions, but ambient air temperature and photosynthetically active radiation (PAR) also interact and influence BVOC net emissions differently. Our results may also suggest that BVOC fluxes are not only a response to changes in temperature and light intensity, as the circadian clock also affects emission rates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251604 | PMC |
http://dx.doi.org/10.1111/gcb.15596 | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Forestry, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. Electronic address:
The readiness of leaf-litter to burn in the presence of fire differs greatly between species. Thus, forests composed of different species vary in their susceptibility to fire. Fire susceptibility of forests may also differ from the arithmetic means of flammability of their component species, i.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
Wastewater and livestock waste can be used as a cheap source of nutrients for microalgae growth. In this work, a cocktail waste medium (CWM) was developed using 75% Chhalera municipal wastewater (C-MWW), 25% Parag dairy wastewater (P-DWW), and 15 g L of poultry litter extract (PLE-15) for low-cost cultivation of Chlorella sp. BRE4.
View Article and Find Full Text PDFJ Vet Res
December 2024
Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
Introduction: This study explored the effects of prenatal exposure to fumonisins B (FB) on bone innervation in newborn Wistar rats.
Material And Methods: Pregnant dams (n = 6 per group) were assigned to either the control or one of two FB-exposed groups (60 mg or 90 mg/kg body weight) from the 7 day of gestation until parturition. On the day of parturition, one male pup from each litter (n = 6 per group) was randomly selected and euthanised, and their femurs were dissected for analysis.
J Anim Sci
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
Litter size traits of sows are crucial for the economic benefits of the pig industry. Three phenotypic traits of 1,206 Large White (LW) pigs, that is, the total number born (TNB), number born alive (NBA), and number of healthy piglets (NHP), were recorded. We evaluated a series of genomic best linear unbiased prediction (GBLUP) models that sequentially added additive effects (model A), dominance effects (model A+D), and epistatic effects (model A+D+AA, model A+D+AA+AD, and model A+D+AA+AD+DD) using chip data and imputed whole-genome sequencing (WGS) data to estimate genetic parameters and predictive accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!