A facile synthesis is reported of two-dimensional (2D) bimetallic (Fe/Co=1:2) metal-organic frameworks (MOF, ca. 2.2 nm thick) via simple stirring of the reaction mixture of Fe/Co salts and 1,4-benzene dicarboxylic acid (1,4-BDC) in the presence of triethylamine and water at room temperature. The mechanism of the 2D, rather than bulk, MOF was revealed by studying the role of each component in the reaction mixture. It was found that these 2D MOF-Fe/Co(1:2) exhibited excellent electrocatalytic activity for the oxygen evolution reaction (OER) under basic conditions. The electrocatalytic mechanism was disclosed via both experimental results and density functional theory (DFT) calculation. The 2D morphology and co-doping of Fe/Co contributed to the superior OER performance of the 2D MOF-Fe/Co(1:2). The simple and efficient synthetic method is suitable for the mass production and future commercialization of functional 2D MOF with low cost and high yield.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202102632DOI Listing

Publication Analysis

Top Keywords

facile synthesis
8
oxygen evolution
8
reaction mixture
8
synthesis two-dimensional
4
two-dimensional iron/cobalt
4
iron/cobalt metal-organic
4
metal-organic framework
4
framework efficient
4
efficient oxygen
4
evolution electrocatalysis
4

Similar Publications

Asymmetric Synthesis of Azahelicenes via CPA-Catalyzed Kinetic Resolution.

Org Lett

January 2025

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

The azahelicenes are structurally fascinating and practically useful chiral scaffolds, but their synthesis, especially in a catalytically asymmetric manner, is rather challenging. Herein, we report a CPA-catalyzed transfer hydrogenation process, which enables a rapid kinetic resolution of aza[6]helicenes. The established strategy provides facile access to enantioenriched aza[6]helicenes and tetrahydro[6]helicenes from easily available starting materials.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

Thioxanthone Synthesis from Thioureas through Double Aryne Insertion into a Carbon-Sulfur Double Bond.

Org Lett

January 2025

Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.

Thioxanthone synthesis from -silylaryl triflates and thioureas is disclosed. Double aryne insertion into the C═S double bond of thioureas and subsequent hydrolysis realized the facile preparation of thioxanthones. A simple reaction procedure and good accessibility of -silylaryl triflates allowed us to synthesize a wide range of highly functionalized thioxanthones.

View Article and Find Full Text PDF

Hydroxylamine (NH2OH) is a key intermediate in the formation of numerous high value-added organonitrogen compounds. The traditional synthesis of NH2OH requires the use of precious metals under high temperature conditions, which leads to high cost, high energy consumption, and environmental pollution. The NH2OH-mediated cascade reaction integrates the electrochemical synthesis of NH2OH and the chemical synthesis of organonitrogen compounds, offering a facile, green, and efficient alternative.

View Article and Find Full Text PDF

Design and preparation of novel magnetic covalent organic framework for the simultaneous preconcentration and sensitive determination of six aflatoxins in food samples.

Food Chem

December 2024

Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China. Electronic address:

An innovative core-shell covalent organic framework (COF), FeO@COF (ETTBA-ND), was synthesized through a facile and energy-efficient method. This adsorbent facilitated magnetic solid phase extraction (MSPE) of six AFs prior to LC-MS/MS analysis, achieving one-step purification and enrichment in food matrices. The successful synthesis of the adsorbent was confirmed using various techniques, with adsorption capacities ranging from 46.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!