Objective: To determine the feasibility of umbilical cord-derived mesenchymal stem cell (UC-MSC) transplantation into the cervical spinal cord of horses by using fluoroscopy with or without endoscopic guidance and to evaluate the neurological signs and tissue reaction after injection.

Study Design: Experimental study.

Animals: Eight healthy adult horses with no clinical signs of neurological disease.

Methods: After cervical ventral interbody fusion (CVIF), ten million fluorescently labeled allogeneic UC-MSC were injected into the spinal cord under endoscopic and fluoroscopic guidance (n = 5) or fluoroscopic guidance only (n = 3). Postoperative neurological examinations were performed, and horses were humanely killed 48 hours (n = 4) or 14 days (n = 4) postoperatively. Spinal tissues were examined after gross dissection and with bright field and fluorescent microscopy.

Results: Needle endoscopy of the cervical canal by ventral approach was associated with intraoperative spinal cord puncture (2/5) and postoperative ataxia (3/5). No intraoperative complications occurred, and one (1/3) horse developed ataxia with cell transplantation under fluoroscopy alone. Umbilical cord-derived MSC were associated with small vessels and detected up to 14 days in the spinal cord. Demyelination was observed in six of eight cases.

Conclusion: Fluoroscopically guided intramedullary UC-MSC transplantation during CVIF avoids spinal cord trauma and decreases risk of ataxia from endoscopy. Umbilical cord-derived MSC persist in the spinal cord for up to 14 days. Cell injection promotes angiogenesis and induces demyelination of the spinal tissue.

Clinical Significance: Umbilical cord-derived MSC transplantation into the spinal cord during CVIF without endoscopy is recommended for future evaluation of cell therapy in horses affected by cervical vertebral compressive myelopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vsu.13611DOI Listing

Publication Analysis

Top Keywords

spinal cord
32
umbilical cord-derived
16
cord-derived msc
12
spinal
10
mesenchymal stem
8
stem cell
8
cell transplantation
8
transplantation spinal
8
cord
8
healthy adult
8

Similar Publications

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy.

Nat Commun

December 2024

Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

NET formation-mediated in situ protein delivery to the inflamed central nervous system.

Nat Commun

December 2024

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!