A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Biofilm Eradication and Reduced Cytotoxicity of a Novel Polygalacturonic and Caprylic Acid Wound Ointment Compared with Common Antiseptic Ointments. | LitMetric

AI Article Synopsis

  • Antiseptic ointments are commonly used for treating contaminated wounds, and a new ointment combining polygalacturonic acid (PG) and caprylic acid (CAP) has shown promise in eliminating biofilms.
  • The study compared the effectiveness and toxicity of PG+CAP against popular commercial antiseptics, finding that PG+CAP completely eradicated resistant biofilms, while others did not perform as well within a 2-hour timeframe.
  • Cytotoxicity tests indicated that PG+CAP is safe for fibroblasts and erythrocytes, showing high cell viability similar to untreated cells, suggesting its potential as an effective and safe antimicrobial wound treatment worthy of further testing.

Article Abstract

Antiseptic wound ointments are widely used to treat dermal wounds that are microbially contaminated. Polygalacturonic acid (PG)+caprylic acid (CAP) is a novel combination that has been shown to eradicate biofilms. We developed a novel PG+CAP ointment and compared the biofilm eradication capability and cytotoxicity of PG+CAP with that of commercially available antiseptic wound ointments. We used a well-established biofilm model to quantitatively assess the eradication of organisms following exposure to the wound ointments for 2 hours. PG+CAP ointment completely eradicated , multidrug-resistant , and methicillin-resistant biofilms, whereas MediHoney, polyhexamethylene biguanide (PHMB), and benzalkonium chloride (BZK) ointments failed to eradicate all biofilms within 2 hours. We assessed cytotoxicity by exposing L-929 fibroblasts to extracts of each ointment; Trypan blue exclusion was used to assess cell viability, and Alamar blue conversion was used to assess metabolic function. After exposure to PG+CAP and MediHoney, fibroblast viability was 96.23% and 95.23%, respectively (Trypan blue), and was comparable to untreated cells (98.77%). PHMB and BZK showed reduced viability (83.25% and 77.83%, respectively, < 0.05). Metabolic activity results followed a similar pattern. Cytotoxicity of PG+CAP ointment towards erythrocytes was comparable to saline. PG+CAP ointment seems to be safe and can rapidly eradicate microbial biofilm; thus, PG+CAP ointment merits further in vivo testing as a potential antimicrobial wound ointment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932769PMC
http://dx.doi.org/10.1155/2021/2710484DOI Listing

Publication Analysis

Top Keywords

pg+cap ointment
20
wound ointments
12
biofilm eradication
8
ointment
8
wound ointment
8
ointment compared
8
antiseptic wound
8
eradicate biofilms
8
cytotoxicity pg+cap
8
trypan blue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!