Background: Gestational diabetes mellitus (GDM) is among the most common metabolic diseases during pregnancy and inevitably leads to maternal and fetal complications. Hyperglycemia results in injury to vascular endothelial cells, including monocyte-endothelial adhesion, which is considered to be the initiating factor of vascular endothelial cell injury. Connexin 43 (Cx43) plays a key role in this adhesion process. Therefore, this study aimed to explore the effects of Cx43 on monocyte-endothelial adhesion in GDM-induced injury of vascular endothelial cells.

Methods: Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords from pregnant women with and without GDM. THP-1 cells (a human leukemia monocytic cell line) adhering to HUVECs, related molecules [intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)], and the activity of the phosphoinositide 3-kinase/protein kinase B/Nuclear factor- kappa B (PI3K/AKT/NF-κB) signaling pathway were compared between the normal and GDM-HUVECs. Oleamide and specific small interfering ribonucleic acids (siRNAs) were used to inhibit Cx43 expression in GDM-HUVECs to observe the effects of Cx43 on the adhesion of THP-1 cells and HUVECs.

Results: A much higher number of THP-1 cells adhered to GDM-HUVECs than to normal HUVECs. This was accompanied by an increased expression of Cx43, ICAM-1, and VCAM-1, as well as activation of the PI3K/AKT/NF-κB signaling pathway. After the inhibition of Cx43 expression in GDM-HUVECs with oleamide and specific siRNA, THP-1-HUVEC adhesion, ICAM-1 and VCAM-1 expression, and activation of PI3K/AKT/NF-κB signaling pathway were all attenuated. Hyperglycemia was able to increase expression of Cx43 in HUVECs.

Conclusions: For the first time, Cx43 expression was found to be substantially higher in GDM-HUVECs than in normal HUVECs. Hyperglycemia caused the overexpression of Cx43 in HUVECs, which resulted in the activation of the PI3K/AKT/NF-κB signaling pathway and the increase of its downstream adhesion molecules, including ICAM-1 and VCAM-1, ultimately leading to increased monocyte-endothelial adhesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940931PMC
http://dx.doi.org/10.21037/atm-19-4738DOI Listing

Publication Analysis

Top Keywords

monocyte-endothelial adhesion
16
pi3k/akt/nf-κb signaling
16
signaling pathway
16
endothelial cells
12
vascular endothelial
12
thp-1 cells
12
cx43 expression
12
icam-1 vcam-1
12
activation pi3k/akt/nf-κb
12
adhesion
10

Similar Publications

Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure.

View Article and Find Full Text PDF

The pro-atherogenic effects and the underlying mechanisms of chronic bisphenol S (BPS) exposure in apolipoprotein E-deficient mice.

Ecotoxicol Environ Saf

October 2024

Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China. Electronic address:

Atherosclerosis (AS) and its related cardiovascular diseases (CVDs) remain the most frequent cause of morbidity and mortality worldwide. Researches showed that bisphenol A (BPA) exposure might exacerbate AS progression. However, as an analogue of BPA, little is known about the cardiovascular toxicity of bisphenol S (BPS), especially whether BPS exposure has the pro-atherogenic effects in mammals is still unknown.

View Article and Find Full Text PDF

Monocytes are circulating macrophage precursors generated from bone marrow hematopoietic stem cells. In adults, monocytes continuously replenish cerebral border-associated macrophages under physiological conditions. Monocytes also rapidly infiltrate the brain in pathological settings.

View Article and Find Full Text PDF

Monocytes are circulating macrophage precursors and are generated from bone marrow hematopoietic stem cells. In the adults, monocytes continuously replenish cerebral border-associated macrophages under a physiological condition. Monocytes also rapidly infiltrate into the brain in the settings of pathological conditions.

View Article and Find Full Text PDF

Anti-atherogenic mechanism of ethanol extract of Christia vespertilionis (L.f.) Bakh. F. Leaves in vitro.

Int Immunopharmacol

June 2024

Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. Electronic address:

Background: Vascular inflammation is the key event in early atherogenesis. Pro-inflammatory endothelial cells induce monocyte recruitment into the sub-endothelial layer of the artery. This requires endothelial expression of adhesion molecules namely intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), alongside chemokines production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!