The deregulation of long non-coding RNAs (lncRNAs) by epigenetic alterations has been implicated in cancer initiation and progression. However, the epigenetically regulated lncRNAs and their association with clinical outcome and therapeutic response in ovarian cancer (OV) remain poorly investigated. This study performed an integrative analysis of DNA methylation data and transcriptome data and identified 419 lncRNAs as potential epigenetically regulated lncRNAs. Using machine-learning and multivariate Cox regression analysis methods, we identified and developed an epigenetically regulated lncRNA expression signature (EpiLncRNASig) consisting of five lncRNAs from the list of 17 epigenetically regulated lncRNAs significantly associated with outcome. The EpiLncRNASig could stratify patients into high-risk groups and low-risk groups with significantly different survival and chemotherapy response in different patient cohorts. Multivariate Cox regression analyses, after adjusted by other clinical features and treatment response, demonstrated the independence of the DEpiLncSig in predicting survival. Functional analysis for relevant protein-coding genes of the DEpiLncSig indicated enrichment of known immune-related or cancer-related biological pathways. Taken together, our study not only provides a promising prognostic biomarker for predicting outcome and chemotherapy response but also will improve our understanding of lncRNA epigenetic regulation mechanisms in OV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940383 | PMC |
http://dx.doi.org/10.3389/fcell.2021.644940 | DOI Listing |
Background: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China.
Background: Recent advancements in contemporary therapeutic approaches have increased the survival rates of lung cancer patients; however, the long-term benefits remain constrained, underscoring the pressing need for novel biomarkers. Surfactant-associated 3 (SFTA3), a long non-coding RNA predominantly expressed in normal lung epithelial cells, plays a crucial role in lung development. Nevertheless, its function in lung adenocarcinoma (LUAD) remains inadequately understood.
View Article and Find Full Text PDFNat Metab
January 2025
Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!