Lung cancer: progression of heat shock protein 70 in association with flap endonuclease 1 protein.

3 Biotech

Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 Jiangsu China.

Published: March 2021

AI Article Synopsis

  • Lung cancer is a major cause of cancer deaths, prompting research for new drug strategies.
  • This study focuses on the interaction between Flap endonuclease 1 (FEN1) and Heat Shock Protein 70 (HSP 70) to improve cancer treatments.
  • Combining the HSP 70 inhibitor (KNK 437) with 5-Fluorouracil (5-FU) enhances the effectiveness of the treatment, suggesting a new approach for targeting FEN1 in lung cancer.

Article Abstract

Unlabelled: Lung cancer is one of the leading causes of cancer deaths worldwide and existing approaches are not enough to manage, and hence, it is important to concentrate on new drug strategies. This study was aimed to identify the interacting partner of Flap endonuclease 1 (FEN1) and its role in cancer treatment. We identified a new FEN1 interacting partner confirmed it as Heat Shock Protein 70 (HSP 70), and its effect on FEN1 expression, in vitro. Additionally, we found that the 5-Fluorouracil's (5-FU) function was significantly improved when used in combination with HSP 70 inhibitor (KNK 437). The findings are interesting, elucidating the synergistic mechanism between two compounds which helps to develop a novel management strategy for over-expressed FEN1 in the lung.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-020-02598-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907298PMC
http://dx.doi.org/10.1007/s13205-020-02598-3DOI Listing

Publication Analysis

Top Keywords

lung cancer
8
heat shock
8
shock protein
8
flap endonuclease
8
interacting partner
8
cancer progression
4
progression heat
4
protein association
4
association flap
4
endonuclease protein
4

Similar Publications

Oral Regimens for Rifampin-Resistant, Fluoroquinolone-Susceptible Tuberculosis.

N Engl J Med

January 2025

From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).

Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.

Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).

View Article and Find Full Text PDF

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Fatuamide A, a Hybrid PKS/NRPS Metallophore from a sp. Marine Cyanobacterium Collected in American Samoa.

J Nat Prod

January 2025

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.

A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.

View Article and Find Full Text PDF

Purpose: After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in PCa and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed.

Experimental Design: Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by immunohistochemical staining.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!