Pseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI's) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970962 | PMC |
http://dx.doi.org/10.1038/s41598-021-85100-0 | DOI Listing |
Front Fungal Biol
January 2025
Department of Microbiology and General Biology, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Viamão, Rio Grande do Sul, Brazil.
Unlabelled: is an emergent fungal pathogen of significant interest for molecular research because of its unique nosocomial persistence, high stress tolerance and common multidrug resistance. To investigate the molecular mechanisms of these or other phenotypes, a handful of CRISPR-Cas9 based allele editing tools have been optimized for . Nonetheless, allele editing in this species remains a significant challenge, and different systems have different advantages and disadvantages.
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Biochemistry and Molecular Biology, Justus-Liebig University Gießen, Gießen, Germany.
Immediately after invading their chosen host cell, the mature human erythrocyte, malaria parasites begin to export an array of proteins to this compartment, where they initiate processes that are prerequisite for parasite survival and propagation, including nutrient import and immune evasion. One consequence of these activities is the emergence of novel adhesive phenotypes that can lead directly to pathology in the human host. To identify parasite proteins involved in this process, we used modern genetic tools to target genes encoding 15 exported parasite proteins, selected by an in silico workflow.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China. Electronic address:
Aeromonas veronii is a zoonotic pathogen that is commonly found in various aquatic environments and causes serious damage to the aquaculture industry. Anti-virulence strategies based on mutating the virulence factors are important antibiotic alternative methods against A. veronii infection.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain. Electronic address:
The spread of multidrug-resistant (MDR) bacteria and their resistance genes along the food chain and the environment has become a global threat aggravated by incorrect disinfection strategies. This study analysed the effect of induction by sub-inhibitory concentrations of eugenol - a major ingredient in clove essential oil commonly used in disinfectant agents - on the phenotypic and genotypic response of MDR Enterococcus faecalis E9.8 strain, selected based on the phenotypic response of other enterococci.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!