Background & Objectives: Chikungunya (CHIK) re-emerged in India in 2006 after a gap of three decades. In Uttar Pradesh (UP), <100 confirmed cases per million were reported during this outbreak. Based on an upsurge of CHIK cases at UP, this retrospective study was conducted to investigate clinical and serological profile of CHIK cases in UP.

Methods: A retrospective study was done on all clinically suspected CHIK cases that had been tested by ELISA for anti-CHIK virus IgM antibodies from September 2012 to December 2017. Based on clinical features, a subset of patients had earlier been tested serologically for dengue and Japanese encephalitis (JE).

Results: Of the 3240 cases enrolled, 771 (23.8%) were seropositive. Patients had a range of clinical manifestations with seropositivity highest in those exhibiting arthralgia with fever (40%), followed by fever of unknown origin (FUO) (22%), encephalitis (13%) and fever with rash (12%). Cases (total, seropositive) increased over 20-fold in 2016 (1389, 412) and 2017 (1619, 341), compared to 2012-2015. Nearly a third of dengue serology-positive cases and a fifth of JE serology-positive cases were co-positive for CHIKV.

Interpretation & Conclusions: Archival data from 2006-2011 and data from this study (2012-2017) indicated that UP experienced first CHIK outbreak in the decade in 2016, as part of a large-scale upsurge across northern India. CHIK should be considered as a differential diagnosis in patients presenting with fever of unknown origin or fever with rash or acute encephalitis, in addition to classical arthralgia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157897PMC
http://dx.doi.org/10.4103/ijmr.IJMR_2303_18DOI Listing

Publication Analysis

Top Keywords

uttar pradesh
8
upsurge chikungunya
4
chikungunya cases
4
cases uttar
4
pradesh india
4
india background
4
background objectives
4
objectives chikungunya
4
chikungunya chik
4
chik re-emerged
4

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.

View Article and Find Full Text PDF

An aqueous zinc-ion battery with an organic-inorganic nanohybrid cathode featuring high operating voltage and long-term stability.

Chem Commun (Camb)

January 2025

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Cathode materials with both high capacity and high operating voltage are essential for advancing aqueous zinc-ion batteries (ZIBs). Conventional high-capacity materials, such as vanadium-based compounds, typically deliver low discharge voltages. In contrast, organic cathodes show high operating voltages but often exhibit limited capacity.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries face significant challenges, such as polysulfide dissolution, sluggish reaction kinetics, and lithium anode corrosion, hindering their practical application. Herein, we report a highly effective approach using a zinc phosphide (ZnP) bifunctional catalyst to address these issues. The ZnP catalyst effectively anchors lithium polysulfides (LiPSs), catalytically reactivates them, and enhances lithium-ion diffusion.

View Article and Find Full Text PDF

Maternal Embryonic Leucine Zipper Kinase (MELK), a pivotal signaling protein, plays a crucial role in various physiological processes such as cell growth, survival, and differentiation. There is currently a growing interest in MELK as a promising therapeutic target for multiple cancers, including triple-negative breast cancer (TNBC). Exploring MELK as a target offers a prospective strategy to impede cancer progression and enhance the efficacy of conventional anticancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!