Synthetic two-dimensional polymorphs of boron, or borophene, have attracted attention because of their anisotropic metallicity, correlated-electron phenomena, and diverse superlattice structures. Although borophene heterostructures have been realized, ordered chemical modification of borophene has not yet been reported. Here, we synthesize "borophane" polymorphs by hydrogenating borophene with atomic hydrogen in ultrahigh vacuum. Through atomic-scale imaging, spectroscopy, and first-principles calculations, the most prevalent borophane polymorph is shown to possess a combination of two-center-two-electron boron-hydrogen and three-center-two-electron boron-hydrogen-boron bonds. Borophane polymorphs are metallic with modified local work functions and can be reversibly returned to pristine borophene through thermal desorption of hydrogen. Hydrogenation also provides chemical passivation because borophane reduces oxidation rates by more than two orders of magnitude after ambient exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.abg1874 | DOI Listing |
Nanoscale
November 2023
Department of Physics, University of Trieste, Trieste 34127, Italy.
The recent interest in characterizing 2D boron polymorphs has led to claims of the first stabilization of a honeycomb phase with conical Dirac-like electron dispersion. However, the synthesis of chemically stable, single, and homogeneous 2D boron phases still represents a significant experimental challenge. This is ascribed to the intrinsic boron electronic configuration that, at variance with carbon, leads to the formation of multi-center covalent bonds.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2022
Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761Hamburg, Germany.
The two-dimensional boron monolayer (borophene) stands out from the two-dimensional atomic layered materials due to its structural flexibility and tunable electronic and mechanical properties from a large number of allotropic materials. The stability of pristine borophene polymorphs could possibly be improved via hydrogenation with atomic hydrogen (referred to as borophane). However, the precise adsorption structures and the underlying mechanism are still elusive.
View Article and Find Full Text PDFJ Phys Chem Lett
February 2022
Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States.
Hydrogenated borophenes─borophanes─have recently been synthesized as a new platform for studying low-dimensional borides, but most of their lattice structures remain unknown. Here, we determine the structures of borophane polymorphs on Ag(111) by performing extensive structural search using the cluster expansion method augmented with first-principles calculations. Our results reveal rich borophane polymorphs whose stability depends on hydrogen pressure.
View Article and Find Full Text PDFScience
March 2021
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
Synthetic two-dimensional polymorphs of boron, or borophene, have attracted attention because of their anisotropic metallicity, correlated-electron phenomena, and diverse superlattice structures. Although borophene heterostructures have been realized, ordered chemical modification of borophene has not yet been reported. Here, we synthesize "borophane" polymorphs by hydrogenating borophene with atomic hydrogen in ultrahigh vacuum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!