Low-cost, highly active, and highly stable catalysts are desired for the generation of hydrogen and oxygen using water electrolyzers. To enhance the kinetics of the oxygen evolution reaction in an acidic medium, it is of paramount importance to redesign iridium electrocatalysts into novel structures with organized morphology and high surface area. Here, we report on the designing of a well-defined and highly active hollow nanoframe based on iridium. The synthesis strategy was to control the shape of nickel nanostructures on which iridium nanoparticles will grow. After the growth of iridium on the surface, the next step was to etch the nickel core to form the NiIr hollow nanoframe. The etching procedure was found to be significant in controlling the hydroxide species on the iridium surface and by that affecting the performance. The catalytic performance of the NiIr hollow nanoframe was studied for oxygen evolution reaction and shows 29 times increased iridium mass activity compared to commercially available iridium-based catalysts. Our study provides novel insights to control the fabrication of iridium-shaped catalysts using 3d transition metal as a template and via a facile etching step to steer the formation of hydroxide species on the surface. These findings shall aid the community to finally create stable iridium alloys for polymer electrolyte membrane water electrolyzers, and the strategy is also useful for many other electrochemical devices such as batteries, fuel cells, sensors, and solar organic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c23026DOI Listing

Publication Analysis

Top Keywords

hollow nanoframe
12
iridium
8
iridium electrocatalysts
8
highly active
8
water electrolyzers
8
oxygen evolution
8
evolution reaction
8
iridium surface
8
niir hollow
8
hydroxide species
8

Similar Publications

Phase Engineering of Zirconia Support Promotes the Catalytic Dehydrogenation of Formic Acid by Pd Active Sites.

Inorg Chem

December 2024

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China.

The development of Pd-based catalysts with outstanding activity and stability can further promote the hydrogen storage application of formic acid (FA). Regulating the support structure is an effective strategy for enhancing active sites in heterogeneous catalytic systems. This study prepared three types of nanosized ZrO through phase engineering to support Pd metal and investigated the implications of support structure on the microenvironment of active sites, thus revealing the structure-activity relationship of the catalysts.

View Article and Find Full Text PDF

The strategic design of a heterostructure catalyst with a core-shell nanoarchitecture is imperative for enhancing the efficiency of the electrocatalytic hydrogen evolution reaction (HER). Herein, the core-shell catalyst comprising the rhenium disulfide nanosheets was vertically integrated onto a hollow nickel sulfide (NiS@ReS) via coprecipitation and hydrothermal treatment. The morphology involves the sulfurization of a nickel-based Prussian blue analogue, effectively mitigating the aggregation of ReS nanosheets and maximizing the exposed active sites.

View Article and Find Full Text PDF

Selective oxidative etching is one of the most effective ways to prepare hollow nanostructures and nanocrystals with specific exposed facets. The mechanism of selective etching in noble metal nanostructures mainly relies on the different reactivity of metal components and the distinct surface energy of multimetallic nanostructures. Recently, phase engineering of nanomaterials (PEN) offers new opportunities for the preparation of unique heterostructures, including heterophase nanostructures.

View Article and Find Full Text PDF

Ultrastrong colloidal crystal metamaterials engineered with DNA.

Sci Adv

September 2023

International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA.

Article Synopsis
  • Scientists are making tiny structures called lattices using very small parts (like 15 nanometers) to create new materials.
  • These tiny structures can be really strong and light, and they have different properties depending on how they are built.
  • One type, called a nanoframe, is about six times stronger than another type called a nanosolid, which could help in making cool new mini devices!
View Article and Find Full Text PDF

Here, elongated pseudohollow nanoframes composed of four rectangular plates enclosing the sides and two open-frame ends with four ridges pointing at the tips for near-field focusing are reported. The side facets act as light-collecting domains and transfer the collected light to the sharp tips for near-field focusing. The nanoframes are hollow inside, allowing the gaseous analyte to penetrate through the entire architecture and enabling efficient detection of gaseous analytes when combined with Raman spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!