As the transmembrane receptor of Netrin-1, the tumor suppressor gene Unc-5 Netrin Receptor C (UNC5C) can trigger apoptosis. Although its tumor suppressor effects have been demonstrated in solid tumors such as colon cancer, there is still a lack of systematic research on its expression regulation mechanism. To address this need, we analyzed datasets from The Cancer Genome Atlas (TCGA) database, including multi-omics data for 32 types of cancers and 10,967 cases. Analysis of these data revealed a trend of significantly decreased UNC5C expression in 16 types of solid tumors. Additionally, low UNC5C expression is related to poor prognosis of five types of tumors and restoring the expression of UNC5C can effectively inhibit the proliferation potential of renal cancer cells. Promoter DNA methylation, chromatin remodeling-mediated epigenetic regulation, transcriptional inhibition, RNA-binding protein and miRNA-mediated post-transcriptional inhibition, genetic changes caused by deep deletion and truncated mutations, and ubiquitinating enzyme-mediated protein degradation can synergistically cause the down-regulation of UNC5C expression in solid tumors. This study is the first to analyze the comprehensive molecular mechanism of down-regulation of the tumor suppressor gene UNC5C from multiple dimensions using pan-cancer data. Our results suggest that analyses of gene expression regulation relying on computational biological methods may help guide the targeted therapy of tumor suppressor gene reactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2021.111355 | DOI Listing |
BMC Cancer
January 2025
Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China.
Background: Recent advancements in contemporary therapeutic approaches have increased the survival rates of lung cancer patients; however, the long-term benefits remain constrained, underscoring the pressing need for novel biomarkers. Surfactant-associated 3 (SFTA3), a long non-coding RNA predominantly expressed in normal lung epithelial cells, plays a crucial role in lung development. Nevertheless, its function in lung adenocarcinoma (LUAD) remains inadequately understood.
View Article and Find Full Text PDFNat Med
January 2025
Department of Hematology, University Hospital of Rennes, UMR U1236, INSERM, University of Rennes, French Blood Establishment, Rennes, France.
The risk of T cell malignancies after chimeric antigen receptor (CAR) T cell therapy is a concern, although the true incidence remains unclear. Here we analyzed the DESCAR-T registry database, encompassing all pediatric and adult patients with hematologic malignancies who received CAR T cell therapy in France since 1 July 2018. Of the 3,066 patients included (2,536 B cell lymphoma, 162 B cell acute lymphoblastic leukemia (ALL) and 368 multiple myeloma), 1,680 (54.
View Article and Find Full Text PDFNat Commun
January 2025
Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis.
View Article and Find Full Text PDFLife Sci
January 2025
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!