Current and future research directions in computer-aided near-infrared spectroscopy: A perspective.

Spectrochim Acta A Mol Biomol Spectrosc

Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria.

Published: June 2021

The present review aims to draw a perspective on the vibrational spectroscopy combined with the tools of computational chemistry. This includes an overview of the accomplishments made so far, the assessment of the present development trends and the prospects for continuing these advances. State-of-the-art methods, current challenges and the expected future advances are evaluated from the point-of-view of the practical application in vibrational spectroscopy. A special attention is given to near-infrared (NIR) spectroscopy, which occupies a distinct position among the techniques of vibrational spectroscopy. As the result of intrinsically complex spectra, reliance on the anharmonicity as well as keen interest given to complex materials, NIR spectroscopy may particularly benefit from computational chemistry. The present key limitations hindering development of NIR spectroscopy are identified; these constitute primarily the limit in the treatable system size and the inability to effectively include chemical matrix effects. Given the expanding role of NIR spectroscopy in science and industry, lifting these limitations would directly enhance the general potential of this technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.119625DOI Listing

Publication Analysis

Top Keywords

nir spectroscopy
16
vibrational spectroscopy
12
spectroscopy
8
computational chemistry
8
current future
4
future directions
4
directions computer-aided
4
computer-aided near-infrared
4
near-infrared spectroscopy
4
spectroscopy perspective
4

Similar Publications

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

Development and Characterization of Hyaluronic Acid Graft-Modified Polydopamine Nanoparticles for Antibacterial Studies.

Polymers (Basel)

January 2025

School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.

The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.

View Article and Find Full Text PDF

Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge.

View Article and Find Full Text PDF

The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our aim was to examine the hydration process of red kidney beans of varying sizes and origins.

View Article and Find Full Text PDF

Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!