Effects of bentonite on the growth process of submerged macrophytes and sediment microenvironment.

J Environ Manage

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: June 2021

The effects of clay mineral bentonite on the growth process of submerged macrophyte V. spiralis and sediment microenvironment were investigated in the study for the first time, aiming to determine whether it is suitable for application in the field of ecological restoration. The growth index, and physiological and biochemical index of V. spiralis in the experiments were measured once a month, and the changes of rhizosphere microorganisms and physicochemical properties of sediments were also studied at the same time. The results demonstrated that bentonite can effectively promote the growth of V. spiralis. The treatment groups of RB1/1 and MB1/5 (the mass ratios of bentonite to sediment were 1/1 and 1/5, respectively.) showed the best V. spiralis growth promotion rates which were 18.78%, and 11.79%, respectively. The highest microbial diversity and abundance existed in group of RB10 (the mass ratio of sediment to bentonite was 10/1), in which the OTUs, Shannon, Chao and Ace were 1521.0, 5.20, 1712.26, and 1686.31, respectively. Bentonite was conducive to the propagation of rhizosphere microorganisms, and further changed the physical and chemical properties of the sediment microenvironment. The nutrient elements dissolved from bentonite may be one of the main reasons that promoted the growth of V. spiralis. The purpose of this result is to prove that bentonite can be further applied as sediment improver and growing media in ecological restoration projects in eutrophic shallow lakes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112308DOI Listing

Publication Analysis

Top Keywords

sediment microenvironment
12
bentonite growth
8
growth process
8
process submerged
8
ecological restoration
8
rhizosphere microorganisms
8
growth spiralis
8
bentonite
7
growth
6
sediment
6

Similar Publications

Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination.

View Article and Find Full Text PDF

The Tabuk region is located in the northern part of Saudi Arabia, and it has an area of 117,000 km between longitudes 26° N and 29° N and latitudes 34° E and 38° E. King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR) is the largest natural reserve in Saudi Arabia and covers about 130,700 km. It represents a new tourist attraction area in the Tabuk region.

View Article and Find Full Text PDF

Describing five new strains in the family Woeseiaceae and emended description of the order Woeseiales with genomic features related to environmental adaptation.

Syst Appl Microbiol

January 2025

Marine College, Shandong University, Weihai 264209, China; State key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shandong University-Weihai Research Institute of Industrial Technology, Weihai 264209, China. Electronic address:

The family Woeseiaceae, also known as the JTB255 bacterial group, are ubiquitous and abundant core members of microbial communities in marine surface sediments. However, to date, only one Woeseiaceae strain isolated from marine sediments has been described, and the phylogeny and environmental adaptation mechanisms of this group have been little explored. Here, we isolated five novel Woeseiaceae strains from the marine solar saltern in Weihai, China.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examines how different concentrations of cadmium (Cd(II)) affect bioluminescence in these biosensors, considering various factors like hydrogel thickness, nutrient availability, and the charge of the hydrogel material.
  • * Results show a consistent relationship between bioluminescence output and free Cd concentration, highlighting how electrostatic interactions and metal accumulation impact the biosensors' metabolic activity and overall effectiveness in detecting environmental changes.
View Article and Find Full Text PDF

Long-term effects of dead algal deposition on sediment surfaces: Behavior of endogenous phosphorus release in sediments.

Water Res

January 2025

Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098.

Algae blooms are frequently triggered owing to the improvements in aquatic trophic levels. The aggregated algae from these blooms are eventually dead and accumulate on sediment surfaces, impacting the microenvironment and phosphorus cycling in aquatic systems. However, research on the effects of naturally dead algal deposition on endogenous P release from sediments is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!