Photodynamic therapy presents a therapeutic choice that can be utilized to treat diverse neoplasms. In this technique, the critical element is a photosensitive molecule that absorbs light energy and transfers it to molecular oxygen or biological molecules to form reactive oxygen species, thus inducing irreversible damage to target cells and ultimately leading to cell death. Bacteriochlorin derivatives are employed as photosensitizers (PSs), possessing light-absorbing capacity in the near-infrared region. The objective of this study was to prepare a semi-synthetic bacteriochlorin from Rhodopseudomonas faecalis and adding Trizma® to improve solubility. Cell viability tests, flow cytometry (apoptotic and necrotic cells were identified by Annexin V and propidium iodide), and confocal microscopy were used to evaluate the photoactivity of bacteriochlorin-Trizma (Bchl-T) in fibroblast (HFF-1-control cells) and breast cancer (MCF-7 cells-target cells) cells. At concentrations above 0.5 μM, Bchl-T demonstrated 80 % cell death, presenting the highest PS interaction (via fluorescence microscopy) with lysosomes, mitochondria, and the endoplasmic reticulum; the cell death type was revealed as apoptosis (via cytometry). Our findings indicated the suitability of Bchl-T for future application in photodynamic therapy against cancer cells by inducing apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2021.102251 | DOI Listing |
Adv Sci (Weinh)
January 2025
The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China.
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Emodin, as a natural active ingredient, has shown great application potential in the fields of medicine, food and cosmetics due to its unique pharmacological effects, such as anti-inflammatory, antioxidant, anti-cancer, etc. In recent years, with the development of science and technology and the increase of people's demand for natural medicine, emodin research has been paid more and more attention by the global scientific research community. The bibliometric analysis of emodin and the construction of knowledge map are still blank.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
Afterglow luminescence provides ultrasensitive optical detection by minimizing tissue autofluorescence and increasing the signal-to-noise ratio. However, due to the lack of suitable unimolecular afterglow scaffolds, current afterglow agents are nanocomposites containing multiple components with limited afterglow performance and have rarely been applied for cancer theranostics. Herein, we report the synthesis of a series of oxathiine-containing donor-acceptor block semiconducting polymers (PDCDs) and the observation of their high photoreactivity and strong near-infrared (NIR) afterglow luminescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!