Dietary phosphatidylcholine supplementation reduces atherosclerosis in Ldlr male mice.

J Nutr Biochem

Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:

Published: June 2021

Choline is an essential nutrient required for various biological processes. Eggs, dairy, and meat are rich in phosphatidylcholine (PC), whereas cereal and legumes are rich in free choline. Excess dietary choline leads to increase plasma trimethylamine N-oxide (TMAO). Epidemiological studies suggest that plasma TMAO is a biomarker for atherosclerosis and it has been suggested that a lower intake of eggs and meat would reduce choline consumption and thus reduce atherosclerosis development. To investigate whether the form of dietary choline influences atherosclerosis development in Ldlr, we randomly fed Ldlrmale mice (aged 8 - 10 wk) one of the three 40% (calories) high fat diets (with 0.5% w/w of cholesterol): Control (0.1% w/w free-choline, CON), choline-supplemented (0.4% free-choline, CS), or PC-supplemented (0.1% free-choline and 0.3% choline from PC, PCS). After 12-wk of dietary intervention, the animals were euthanized and tissues and blood collected. Aortic atherosclerotic plaque area, plasma choline, lipid metabolites, and spleen and peripheral blood cell phenotypes were quantified. Surprisingly, the PCS group had significantly lower atherosclerotic lesions while having 2-fold higher plasma TMAO levels compared with both CON and CS groups (P<0.05). In the fasting state, we found that PCS decreased plasma very low-density lipoprotein-cholesterol (VLDL-C) and apolipoprotein B48 (APOB48), and increased plasma high-density lipoprotein-cholesterol (HDL-C). However, very low-density lipoprotein (VLDL) secretion was not affected by dietary treatment. We observed lower levels of circulating pro-atherogenic chemokines in the PCS group. Our study suggests that increased dietary PC intake does not induce a pro-atherogenic phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2021.108617DOI Listing

Publication Analysis

Top Keywords

dietary choline
8
plasma tmao
8
atherosclerosis development
8
choline
7
dietary
4
dietary phosphatidylcholine
4
phosphatidylcholine supplementation
4
supplementation reduces
4
atherosclerosis
4
reduces atherosclerosis
4

Similar Publications

Sappanone A alleviates metabolic dysfunction-associated steatohepatitis by decreasing hepatocyte lipotoxicity via targeting Mup3 in mice.

Phytomedicine

December 2024

Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China. Electronic address:

Background And Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory lipotoxic disorder marked by hepatic steatosis, hepatocyte damage, inflammation, and varying stages of fibrosis. Sappanone A (SA), a flavonoid, exhibits anti-inflammatory and hepatoprotection activities. Nevertheless, the effects of SA on MASH remain ambiguous.

View Article and Find Full Text PDF

Polar lipids from dairy are novel sources of energy that may replace other dietary lipids and impact plasma lipidomic profiles in piglets. This study evaluated the impact of feeding diets rich in polar lipids on the plasma lipidome of piglets during the weaning period. Weaned male piglets ( = 240; 21 days of age; 6.

View Article and Find Full Text PDF

Chronic cerebral hypoperfusion (CCH) is a crucial mechanism causing vascular cognitive impairment (VCI). Choline is metabolized by gut microbiota into trimethylamine N-oxide (TMAO), a risk factor of cardiovascular diseases and cognitive impairment. However, the impact of choline-TMAO pathway on CCH-induced VCI is elusive.

View Article and Find Full Text PDF

Choline is vital in a variety of physiological processes that influence brain development, growth, and carcass characteristics in birds and mammals. In this study, we investigated the influence of graded supplemental choline chloride on growth performance, carcass quality, and liver characteristics in grow-finish pigs. Pigs (672 barrows and 588 gilts) were obtained from a commercial nursery facility at 8 weeks of age and assigned to treatment based on body weight and sex, with 21 same-sex pigs comprising a replicate pen.

View Article and Find Full Text PDF

Association of trimethylamine N-oxide and metabolites with kidney function decline in patients with chronic kidney disease.

Clin Nutr

December 2024

Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:

Background: Trimethylamine N-oxide (TMAO) is a gut microbial metabolite derived from dietary l-carnitine and choline. High plasma TMAO levels are associated with cardiovascular disease and overall mortality, but little is known about the associations of TMAO and related metabolites with the risk of kidney function decline among patients with chronic kidney disease (CKD).

Methods: We prospectively followed 152 nondialysis patients with CKD stages 3-5 and measured plasma TMAO and related metabolites (trimethylamine [TMA], choline, carnitine, and γ-butyrobetaine) via liquid chromatography‒mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!